scholarly journals Selecting Clinically Relevant Gait Characteristics for Classification of Early Parkinson’s Disease: A Comprehensive Machine Learning Approach

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rana Zia Ur Rehman ◽  
Silvia Del Din ◽  
Yu Guan ◽  
Alison J. Yarnall ◽  
Jian Qing Shi ◽  
...  

AbstractParkinson’s disease (PD) is the second most common neurodegenerative disease; gait impairments are typical and are associated with increased fall risk and poor quality of life. Gait is potentially a useful biomarker to help discriminate PD at an early stage, however the optimal characteristics and combination are unclear. In this study, we used machine learning (ML) techniques to determine the optimal combination of gait characteristics to discriminate people with PD and healthy controls (HC). 303 participants (119 PD, 184 HC) walked continuously around a circuit for 2-minutes at a self-paced walk. Gait was quantified using an instrumented mat (GAITRite) from which 16 gait characteristics were derived and assessed. Gait characteristics were selected using different ML approaches to determine the optimal method (random forest with information gain and recursive features elimination (RFE) technique with support vector machine (SVM) and logistic regression). Five clinical gait characteristics were identified with RFE-SVM (mean step velocity, mean step length, step length variability, mean step width, and step width variability) that accurately classified PD. Model accuracy for classification of early PD ranged between 73–97% with 63–100% sensitivity and 79–94% specificity. In conclusion, we identified a subset of gait characteristics for accurate early classification of PD. These findings pave the way for a better understanding of the utility of ML techniques to support informed clinical decision-making.

Author(s):  
Angana Saikia ◽  
Vinayak Majhi ◽  
Masaraf Hussain ◽  
Sudip Paul ◽  
Amitava Datta

Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.


Author(s):  
Angana Saikia ◽  
Vinayak Majhi ◽  
Masaraf Hussain ◽  
Sudip Paul ◽  
Amitava Datta

Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.


2020 ◽  
Vol 13 (5) ◽  
pp. 508-523 ◽  
Author(s):  
Guan‐Hua Huang ◽  
Chih‐Hsuan Lin ◽  
Yu‐Ren Cai ◽  
Tai‐Been Chen ◽  
Shih‐Yen Hsu ◽  
...  

2020 ◽  
Vol 10 (4) ◽  
pp. 242 ◽  
Author(s):  
Daniele Pietrucci ◽  
Adelaide Teofani ◽  
Valeria Unida ◽  
Rocco Cerroni ◽  
Silvia Biocca ◽  
...  

The involvement of the gut microbiota in Parkinson’s disease (PD), investigated in several studies, identified some common alterations of the microbial community, such as a decrease in Lachnospiraceae and an increase in Verrucomicrobiaceae families in PD patients. However, the results of other bacterial families are often contradictory. Machine learning is a promising tool for building predictive models for the classification of biological data, such as those produced in metagenomic studies. We tested three different machine learning algorithms (random forest, neural networks and support vector machines), analyzing 846 metagenomic samples (472 from PD patients and 374 from healthy controls), including our published data and those downloaded from public databases. Prediction performance was evaluated by the area under curve, accuracy, precision, recall and F-score metrics. The random forest algorithm provided the best results. Bacterial families were sorted according to their importance in the classification, and a subset of 22 families has been identified for the prediction of patient status. Although the results are promising, it is necessary to train the algorithm with a larger number of samples in order to increase the accuracy of the procedure.


2021 ◽  
Author(s):  
Mary B. Makarious ◽  
Hampton L. Leonard ◽  
Dan Vitale ◽  
Hirotaka Iwaki ◽  
Lana Sargent ◽  
...  

SUMMARYBackgroundPersonalized medicine promises individualized disease prediction and treatment. The convergence of machine learning (ML) and available multi-modal data is key moving forward. We build upon previous work to deliver multi-modal predictions of Parkinson’s Disease (PD).MethodsWe performed automated ML on multi-modal data from the Parkinson’s Progression Marker Initiative (PPMI). After selecting the best performing algorithm, all PPMI data was used to tune the selected model. The model was validated in the Parkinson’s Disease Biomarker Program (PDBP) dataset. Finally, networks were built to identify gene communities specific to PD.FindingsOur initial model showed an area under the curve (AUC) of 89.72% for the diagnosis of PD. The tuned model was then tested for validation on external data (PDBP, AUC 85.03%). Optimizing thresholds for classification, increased the diagnosis prediction accuracy (balanced accuracy) and other metrics. Combining data modalities outperforms the single biomarker paradigm. UPSIT was the largest contributing predictor for the classification of PD. The transcriptomic data was used to construct a network of disease-relevant transcripts.InterpretationWe have built a model using an automated ML pipeline to make improved multi-omic predictions of PD. The model developed improves disease risk prediction, a critical step for better assessment of PD risk. We constructed gene expression networks for the next generation of genomics-derived interventions. Our automated ML approach allows complex predictive models to be reproducible and accessible to the community.FundingNational Institute on Aging, National Institute of Neurological Disorders and Stroke, the Michael J. Fox Foundation, and the Global Parkinson’s Genetics Program.RESEARCH IN CONTEXTEvidence before this studyPrior research into predictors of Parkinson’s disease (PD) has either used basic statistical methods to make predictions across data modalities, or they have focused on a single data type or biomarker model. We have done this using an open-source automated machine learning (ML) framework on extensive multi-modal data, which we believe yields robust and reproducible results. We consider this the first true multi-modality ML study of PD risk classification.Added value of this studyWe used a variety of linear, non-linear, kernel, neural networks, and ensemble ML algorithms to generate an accurate classification of both cases and controls in independent datasets using data that is not involved in PD diagnosis itself at study recruitment. The model built in this paper significantly improves upon our previous models that used the entire training dataset in previous work1. Building on this earlier work, we showed that the PD diagnosis can be refined using improved algorithmic classification tools that may yield potential biological insights. We have taken careful consideration to develop and validate this model using public controlled-access datasets and an open-source ML framework to allow for reproducible and transparent results.Implications of all available evidenceTraining, validating, and tuning a diagnostic algorithm for PD will allow us to augment clinical diagnoses or risk assessments with less need for complex and expensive exams. Going forward, these models can be built on remote or asynchronously collected data which may be important in a growing telemedicine paradigm. More refined diagnostics will also increase clinical trial efficiency by potentially refining phenotyping and predicting onset, allowing providers to identify potential cases earlier. Early detection could lead to improved treatment response and higher efficacy. Finally, as part of our workflow, we built new networks representing communities of genes correlated in PD cases in a hypothesis-free manner, showing how new and existing genes may be connected and highlighting therapeutic opportunities.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9463
Author(s):  
Byungjoo Noh ◽  
Changhong Youm ◽  
Myeounggon Lee ◽  
Sang-Myung Cheon

Background No previous study has examined the age-dependent characteristics of gait in individuals between 50 and 79 years simultaneously in healthy individuals and individuals with Parkinson’s disease (PD) over continuous gait cycles. This study aimed to investigate age-related differences in gait characteristics on individuals age ranged 50–79 years, including individuals with PD, during a 1-minute treadmill walking session. Additionally, we aimed to investigate the differences associated with spatiotemporal gait parameters and PD compared in age-matched individuals. Methods This study included 26 individuals with PD and 90 participants age ranged 50–79 years. The treadmill walking test at a self-preferred speed was performed for 1 min. The embedded inertial measurement unit sensor in the left and right outsoles-based system was used to collect gait characteristics based on tri-axial acceleration and tri-axial angular velocities. Results Participants aged >60 years had a decreased gait speed and shortened stride and step, which may demonstrate a distinct shift in aging (all p < 0.005). Individuals with PD showed more of a decrease in variables with a loss of consistency, including gait asymmetry (GA), phase coordination index (PCI) and coefficient of variation (CV) of all variables, than age-matched individuals (all p < 0.001). Gait speed, stride and step length, stance phase, variability, GA and PCI were the variables that highly depended on age and PD. Discussion Older adults could be considered those older than 60 years of age when gait alterations begin, such as a decreased gait speed as well as shortened stride and step length. On the other hand, a loss of consistency in spatiotemporal parameters and a higher GA and PCI could be used to identify individuals with PD. Thus, the CV of all spatiotemporal parameters, GA and PCI during walking could play an important role and be useful in identifying individuals with PD. Conclusion This study provided the notable aging pattern characteristics of gait in individuals >50 years, including individuals with PD. Increasing age after 60 years is associated with deterioration in spatiotemporal parameters of gait during continuous 1-minute treadmill walking. Additionally, GA, PCI and the CV of all variables could be used to identify PD which would be placed after 70 years of age. It may be useful to determine the decline of gait performance in general and among individuals with PD.


Sign in / Sign up

Export Citation Format

Share Document