reduction techniques
Recently Published Documents


TOTAL DOCUMENTS

2972
(FIVE YEARS 771)

H-INDEX

62
(FIVE YEARS 11)

2022 ◽  
Vol 19 (1) ◽  
pp. 1-21
Author(s):  
Daeyeal Lee ◽  
Bill Lin ◽  
Chung-Kuan Cheng

SMART NoCs achieve ultra-low latency by enabling single-cycle multiple-hop transmission via bypass channels. However, contention along bypass channels can seriously degrade the performance of SMART NoCs by breaking the bypass paths. Therefore, contention-free task mapping and scheduling are essential for optimal system performance. In this article, we propose an SMT (Satisfiability Modulo Theories)-based framework to find optimal contention-free task mappings with minimum application schedule lengths on 2D/3D SMART NoCs with mixed dimension-order routing. On top of SMT’s fast reasoning capability for conditional constraints, we develop efficient search-space reduction techniques to achieve practical scalability. Experiments demonstrate that our SMT framework achieves 10× higher scalability than ILP (Integer Linear Programming) with 931.1× (ranges from 2.2× to 1532.1×) and 1237.1× (ranges from 4× to 4373.8×) faster average runtimes for finding optimum solutions on 2D and 3D SMART NoCs and our 2D and 3D extensions of the SMT framework with mixed dimension-order routing also maintain the improved scalability with the extended and diversified routing paths, resulting in reduced application schedule lengths throughout various application benchmarks.


2022 ◽  
Vol 11 (2) ◽  
pp. 1-22
Author(s):  
Abha Jain ◽  
Ankita Bansal

The need of the customers to be connected to the network at all times has led to the evolution of mobile technology. Operating systems play a vitol role when we talk of technology. Nowadays, Android is one of the popularly used operating system in mobile phones. Authors have analysed three stable versions of Android, 6.0, 7.0 and 8.0. Incorporating a change in the version after it is released requires a lot of rework and thus huge amount of costs are incurred. In this paper, the aim is to reduce this rework by identifying certain parts of a version during early phase of development which need careful attention. Machine learning prediction models are developed to identify the parts which are more prone to changes. The accuracy of such models should be high as the developers heavily rely on them. The high dimensionality of the dataset may hamper the accuracy of the models. Thus, the authors explore four dimensionality reduction techniques, which are unexplored in the field of network and communication. The results concluded that the accuracy improves after reducing the features.


2022 ◽  
Vol 41 (1) ◽  
pp. 1-15
Author(s):  
Shilin Zhu ◽  
Zexiang Xu ◽  
Tiancheng Sun ◽  
Alexandr Kuznetsov ◽  
Mark Meyer ◽  
...  

Although Monte Carlo path tracing is a simple and effective algorithm to synthesize photo-realistic images, it is often very slow to converge to noise-free results when involving complex global illumination. One of the most successful variance-reduction techniques is path guiding, which can learn better distributions for importance sampling to reduce pixel noise. However, previous methods require a large number of path samples to achieve reliable path guiding. We present a novel neural path guiding approach that can reconstruct high-quality sampling distributions for path guiding from a sparse set of samples, using an offline trained neural network. We leverage photons traced from light sources as the primary input for sampling density reconstruction, which is effective for challenging scenes with strong global illumination. To fully make use of our deep neural network, we partition the scene space into an adaptive hierarchical grid, in which we apply our network to reconstruct high-quality sampling distributions for any local region in the scene. This allows for effective path guiding for arbitrary path bounce at any location in path tracing. We demonstrate that our photon-driven neural path guiding approach can generalize to diverse testing scenes, often achieving better rendering results than previous path guiding approaches and opening up interesting future directions.


2022 ◽  
Vol 12 (2) ◽  
pp. 828
Author(s):  
Tebogo Bokaba ◽  
Wesley Doorsamy ◽  
Babu Sena Paul

Road traffic accidents (RTAs) are a major cause of injuries and fatalities worldwide. In recent years, there has been a growing global interest in analysing RTAs, specifically concerned with analysing and modelling accident data to better understand and assess the causes and effects of accidents. This study analysed the performance of widely used machine learning classifiers using a real-life RTA dataset from Gauteng, South Africa. The study aimed to assess prediction model designs for RTAs to assist transport authorities and policymakers. It considered classifiers such as naïve Bayes, logistic regression, k-nearest neighbour, AdaBoost, support vector machine, random forest, and five missing data methods. These classifiers were evaluated using five evaluation metrics: accuracy, root-mean-square error, precision, recall, and receiver operating characteristic curves. Furthermore, the assessment involved parameter adjustment and incorporated dimensionality reduction techniques. The empirical results and analyses show that the RF classifier, combined with multiple imputations by chained equations, yielded the best performance when compared with the other combinations.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Akram Vasighizaker ◽  
Saiteja Danda ◽  
Luis Rueda

AbstractIdentifying relevant disease modules such as target cell types is a significant step for studying diseases. High-throughput single-cell RNA-Seq (scRNA-seq) technologies have advanced in recent years, enabling researchers to investigate cells individually and understand their biological mechanisms. Computational techniques such as clustering, are the most suitable approach in scRNA-seq data analysis when the cell types have not been well-characterized. These techniques can be used to identify a group of genes that belong to a specific cell type based on their similar gene expression patterns. However, due to the sparsity and high-dimensionality of scRNA-seq data, classical clustering methods are not efficient. Therefore, the use of non-linear dimensionality reduction techniques to improve clustering results is crucial. We introduce a method that is used to identify representative clusters of different cell types by combining non-linear dimensionality reduction techniques and clustering algorithms. We assess the impact of different dimensionality reduction techniques combined with the clustering of thirteen publicly available scRNA-seq datasets of different tissues, sizes, and technologies. We further performed gene set enrichment analysis to evaluate the proposed method’s performance. As such, our results show that modified locally linear embedding combined with independent component analysis yields overall the best performance relative to the existing unsupervised methods across different datasets.


Author(s):  
Tatireddy Reddy ◽  
Jonnadula Harikiran

Hyperspectral imaging is used in a wide range of applications. When used in remote sensing, satellites and aircraft are employed to collect the images, which are used in agriculture, environmental monitoring, urban planning and defence. The exact classification of ground features in the images is a significant research issue and is currently receiving greater attention. Moreover, these images have a large spectral dimensionality, which adds computational complexity and affects classification precision. To handle these issues, dimensionality reduction is an essential step that improves the performance of classifiers. In the classification process, several strategies have produced good classification results. Of these, machine learning techniques are the most powerful approaches. As a result, this paper reviews three different types of hyperspectral image machine learning classification methods: cluster analysis, supervised and semi-supervised classification. Moreover, this paper shows the effectiveness of all these techniques for hyperspectral image classification and dimensionality reduction. Furthermore, this review will assist as a reference for future research to improve the classification and dimensionality reduction approaches.


2022 ◽  
Vol 15 (1) ◽  
pp. e246581
Author(s):  
Austin Gomindes ◽  
Mohammedabbas Remtulla ◽  
Julian Cooper ◽  
Anastasios P Nikolaides

We present a case of an elderly and comorbid patient who was scheduled to undergo a hip fracture fixation using an intramedullary nail. Unfortunately, this was delayed by 3 weeks as the patient was unfit to undergo this procedure. She was placed onto the traction table and intraoperatively sustained a superior and inferior pubic rami fracture while attempting reduction on the traction table. Closed-reduction techniques using traction tables and perineal posts are not without morbidity. Risk factors such as osteoporosis and delayed-fixation should be accounted for when managing this complex and often frail group of patients.


Sign in / Sign up

Export Citation Format

Share Document