scholarly journals Magma chamber evolution during the 1650 AD Kolumbo eruption provides clues about past and future volcanic activity

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
K. I. Konstantinou

Abstract Kolumbo submarine volcano lies 7 km NE of Santorini caldera and its last eruption which occurred in 1650 AD, caused damage and casualties to the nearby islands. Here a simple model of a chamber, containing silicic magma underlain by a smaller quantity of mafic magma, is utilised in order to understand the chamber behaviour during the 1650 AD eruption. Results show that in order to reproduce the duration (83–281 days) and the dense rock equivalent volume ($${\sim }\,2\, \hbox {km}^3$$ ∼ 2 km 3 ) of the eruption, initial overpressure in the chamber should be around 10 MPa and the mafic magma should occupy up to 5% of the chamber volume. It is found that the time needed to inject mafic magma equal to 1–15% of the chamber volume varies between 1.4–13.7 ka, if the radius of the chamber is about 1500 m as inferred from tomographic images. These long recurrence times agree well with the small number of eruptions ($$N = 5$$ N = 5 ) within a period of > 70 ka and suggest that an eruption in the near future is unlikely. Volcanic activity at Kolumbo is probably triggered by a combination of exsolved volatiles and a small but steady influx of mafic melt in the chamber.

2008 ◽  
Vol 72 (4) ◽  
pp. 925-940 ◽  
Author(s):  
D. Gagnevin ◽  
J. S. Daly ◽  
G. Poli

AbstractA detailed field study to determine quantitatively the distribution of K-feldspar megacrysts, mafic microgranular enclaves (MME) and metasedimentary xenoliths has been carried out in the Monte Capanne pluton (Elba, Italy) with a view to evaluating the utility of this approach to petrogenetic investigations. Mafic microgranular enclaves are inferred to result from interactions between mafic and felsic magmas, while xenoliths attest to crustal assimilation occurring in the Monte Capanne magma chamber. In particular, we emphasize, based on our field data, that both processes are intimately linked, such that xenolith dissolution during assimilation was triggered by replenishment with hot mafic magma. It is suggested that the previously defined ‘San Piero’ and ‘San Francesco’ facies do not differ substantially, and are thus amalgamated and renamed as the ‘Pomonte’ facies. Results also indicate that the abundance of K-feldspar megacrysts is positively correlated with the volumetric abundance of MME in the Sant’ Andrea facies, which we link to a recharging, mingling and textural coarsening event that occurred at a rather late stage of magma-chamber evolution prior to emplacement. This study demonstrates how petrogenetic processes can be deciphered by detailed field quantitative analyses of granite-forming components, thus complementing geochemical investigations.


2020 ◽  
Vol 57 (9) ◽  
pp. 1011-1029
Author(s):  
Gabriel Sombini dos Santos ◽  
Sandra M. Barr ◽  
Chris E. White ◽  
Deanne van Rooyen

The Margaree pluton extends for >40 km along the axis of the Ganderian Aspy terrane of northern Cape Breton Island, Nova Scotia. The pluton consists mainly of coarse-grained megacrystic syenogranite, intruded by small bodies of medium-grained equigranular syenogranite and microgranite porphyry, all locally displaying rapakivi texture. The three rock types have similar U–Pb (zircon) ages of 363 ± 1.6, 364.8 ± 1.6, and 365.5 ± 3.3 Ma, respectively, consistent with field and petrological evidence that they are coeval and comagmatic. The rare earth elements display parallel trends characterized by enrichment in the light rare earth elements, flat heavy rare earth elements, moderate negative Eu anomalies, and, in some cases, positive Ce anomalies. The megacrystic and rapakivi textures are attributed to thermal perturbation in the magma chamber caused by the mixing of mafic and felsic magma, even though direct evidence of the mafic magma is mainly lacking at the current level of exposure. Magma evolution was controlled by fractionation of quartz, K-feldspar, and Na-rich plagioclase in molar proportions of 0.75:0.12:0.13. The chemical and isotopic (Sm–Nd) signature of the Margaree pluton is consistent with the melting of preexisting continental crust that was enriched in heat-producing elements, likely assisted by intrusion of mantle-derived mafic magma during Late Devonian regional extension. The proposed model involving magma mixing at shallow crustal levels in a cryptic silicic-mafic magma chamber during post-Acadian extension is consistent with models for other, better exposed occurrences of rapakivi granite in the northern Appalachian orogen.


Geology ◽  
2020 ◽  
Vol 48 (5) ◽  
pp. 431-435 ◽  
Author(s):  
Meredith Townsend ◽  
Christian Huber

Abstract We present a model for a coupled magma chamber–dike system to investigate the conditions required to initiate volcanic eruptions and to determine what controls the size of eruptions. The model combines the mechanics of dike propagation with internal chamber dynamics including crystallization, volatile exsolution, and the elastic response of the magma and surrounding crust to pressure changes within the chamber. We find three regimes for dike growth and eruptions: (1) below a critical magma chamber size, eruptions are suppressed because chamber pressure drops to lithostatic before a dike reaches the surface; (2) at an intermediate chamber size, the erupted volume is less than the dike volume (“dike-limited” eruption regime); and (3) above a certain chamber size, dikes can easily reach the surface and the erupted volume follows a classic scaling law, which depends on the attributes of the magma chamber (“chamber-limited” eruption regime). The critical chamber volume for an eruption ranges from ∼0.01 km3 to 10 km3 depending on the water content in the magma, depth of the chamber, and initial overpressure. This implies that the first eruptions at a volcano likely are preceded by a protracted history of magma chamber growth at depth, and that the crust above the magma chamber may have trapped several intrusions or “failed eruptions.” Model results can be combined with field observations of erupted volume, pressure, and crystal and volatile content to provide tighter constraints on parameters such as the eruptible chamber size.


Author(s):  
Aleksandra Gawęda ◽  
Krzysztof Szopa

ABSTRACTThe High Tatra granite intrusion is an example of a Variscan syn-tectonic, tongue-shaped intrusion. In some portions of the intrusion, structures occur which appear to be of sedimentary origin. These include structures similar to graded bedding, cross-bedding, troughs and flame structures, K-feldspar-rich cumulates and magmatic breccias. Formation of these structures might be related to changing magma properties, including crystal fraction, development of a crystal mush and a decrease in magma viscosity, stimulated by influx of mafic magma and high volatile content. The suggested processes in operation are: gravity-controlled separation, magma flow segregation, deposition on the magma-chamber floor, filter pressing and density currents stimulated by tectonic activity.%The formation of the sedimentary structures was also aided by the presence of large numbers of xenoliths that acted as a heat sink and influenced the thermal field in the intrusion, stimulating rapid cooling and crystal nucleation. Sinking xenoliths deformed the layering and, to some extent, protected the unconsolidated crystal mush from erosion by magma flowing past.%Areas with well-developed sedimentary magmatic structures can be viewed as having involved magma rich in crystals locally forming closely-packed networks from which residual melt was extracted by filter pressing, and preserved in leucocratic pods and dykes. Interleaved, non-layered granite may be interpreted to have formed from the magma with initially low crystal fractions.%It is suggested that the intrusion was formed from numerous magma injections representing different stages in the mixing and mingling of felsic and mafic sources. It solidified by gravitation-driven crystal accumulation and flow sorting on the magma chamber floor and on the surfaces of large numbers of xenoliths. Shear stress acting during intrusion might have influenced the formation of magmatic structures.


Author(s):  
R. A. Wiebe

ABSTRACT:Plutonic complexes with interlayered mafic and silicic rocks commonly contain layers (1–50 m thick) with a chilled gabbroic base that grades upwards to dioritic or silicic cumulates. Each chilled base records the infusion of new basaltic magma into the chamber. Some layers preserve a record of double-diffusive convection with hotter, denser mafic magma beneath silicic magma. Processes of hybridisation include mechanical mixing of crystals and selective exchange of H2O, alkalis and isotopes. These effects are convected away from the boundary into the interiors of both magmas. Fractional crystallisation aad replenishment of the mafic magma can also generate intermediate magma layers highly enriched in incompatible elements.Basaltic infusions into silicic magma chambers can significantly affect the thermal and chemical character of resident granitic magmas in shallow level chambers. In one Maine pluton, they converted resident I-type granitic magma into A-type granite and, in another, they produced a low-K (trondhjemitic) magma layer beneath normal granitic magma. If comparable interactions occur at deeper crustal levels, selective thermal, chemical and isotopic exchange should probably be even more effective. Because the mafic magmas crystallise first and relatively rapidly, silicic magmas that rise away from deep composite chambers may show little direct evidence (e.g. enclaves) of their prior involvement with mafic magma.


2010 ◽  
Vol 51 (6) ◽  
pp. 1333-1354 ◽  
Author(s):  
A. Tomiya ◽  
E. Takahashi ◽  
N. Furukawa ◽  
T. Suzuki

1998 ◽  
Vol 13 (13) ◽  
pp. 1035-1039
Author(s):  
JISHNU DEY ◽  
B. C. SAMANTA

There is information (and more will be known) about baryons containing one charm and beauty quark. A simple model of the charm and beauty baryons is found to give results which support the recent findings of other models including the 1/MQ expansion of QCD, where MQ is the heavy quark mass. Sum rules are found from the simple model which can be tested in the near future.


Sign in / Sign up

Export Citation Format

Share Document