First-principles study of the ternary effects on the plasticity of $$\upgamma $$-TiAl crystals
AbstractWe studied the effects of important ternary elements, such as Cr, Nb, and V, on the plasticity of $$\upgamma $$ γ -TiAl crystals by calculating the point defect formation energy and the change in the generalized stacking fault energy (GSFE) surface from first-principles calculations. For all three elements, the point defect formation energies of the substitutional defects are lower in the Ti site than in the Al site, which implies that substitution on the Ti site is energetically more stable. We computed the GSFE surfaces with and without a substitutional solute and obtained the ideal critical resolved shear stress (ICRSS) of each partial slip. The change in the GSFE surface indicates that the substitution of Ti with Cr, Nb, or V results in an increase in the yield strength because the ICRSS of the superlattice intrinsic stacking fault (SISF) partial slip increases. Interestingly, we find that Cr substitution on an Al site could occur owing to the small difference between the substitutional defect formation energies of the Ti and Al sites. In that case, the reduction of ICRSSs of the SISF partial slip and twinning would lead to improved twinnability. We discuss the implications of the computational predictions by comparing them with experimental results in the literature.