scholarly journals Effects of climatic factors on the net primary productivity in the source region of Yangtze River, China

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhe Yuan ◽  
Yongqiang Wang ◽  
Jijun Xu ◽  
Zhiguang Wu

AbstractThe ecosystem of the Source Region of Yangtze River (SRYR) is highly susceptible to climate change. In this study, the spatial–temporal variation of NPP from 2000 to 2014 was analyzed, using outputs of Carnegie–Ames–Stanford Approach model. Then the correlation characteristics of NPP and climatic factors were evaluated. The results indicate that: (1) The average NPP in the SRYR is 100.0 gC/m2 from 2000 to 2014, and it shows an increasing trend from northwest to southeast. The responses of NPP to altitude varied among the regions with the altitude below 3500 m, between 3500 to 4500 m and above 4500 m, which could be attributed to the altitude associated variations of climatic factors and vegetation types; (2) The total NPP of SRYR increased by 0.18 TgC per year in the context of the warmer and wetter climate during 2000–2014. The NPP was significantly and positively correlated with annual temperature and precipitation at interannual time scales. Temperature in February, March, May and September make greater contribution to NPP than that in other months. And precipitation in July played a more crucial role in influencing NPP than that in other months; (3) Climatic factors caused the NPP to increase in most of the SRYR. Impacts of human activities were concentrated mainly in downstream region and is the primary reason for declines in NPP.

2019 ◽  
Vol 39 (14) ◽  
Author(s):  
戴黎聪 DAI Licong ◽  
郭小伟 GUO Xiaowei ◽  
张法伟 ZHANG Fawei ◽  
柯浔 KE Xun ◽  
曹莹芳 CAO Yingfang ◽  
...  

2019 ◽  
Vol 11 (12) ◽  
pp. 1451
Author(s):  
Fengying Zhang ◽  
Zengxin Zhang ◽  
Rui Kong ◽  
Juan Chang ◽  
Jiaxi Tian ◽  
...  

Net Primary Productivity (NPP) is a basis of material and energy flows in terrestrial ecosystems, and it is also an important component in the research on carbon cycle and carbon budget. This paper evaluated the spatial distribution pattern and temporal change trends for forest NPP simulated by the LPJ (Lund-Potsdam-Jena) model and NDVI (normalized difference vegetation index) in the Yangtze River basin from 1982 to 2013. The results revealed that: (1) the spatial distribution of the forest NPP and NDVI in the Yangtze River basin has gradually decreased from the southeast coast to the northwest. The forest NPP and NDVI in the mid-lower Yangtze were higher than that of the upper Yangtze; (2) the forest NPP and NDVI in most areas of the Yangtze River basin were positively correlated with the temperature and precipitation. Moreover, the correlations among the temperature with the forest NPP and NDVI were stronger than that of correlations among precipitation with forest NPP and NDVI. Moreover, the extreme drought event in the year of 2004–2005 led the NPP to decrease in the middle and lower Yangtze River basin; (3) human activity such as major ecological projects would have a certain impact on the NPP and NDVI. The increase in forest areas from 2000 to 2010 was larger than that from 1990 to 2000. Moreover, the increasing rate for the NDVI was higher than that of NPP, especially after the year 2000, which indicates that the major ecological projects might have great impacts on the vegetation dynamics. Moreover, more attention should be paid on the joint impacts of human activity and climate change on terrestrial NPP and NDVI.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 365
Author(s):  
Xiao Hu ◽  
Yujie He ◽  
Ze Kong ◽  
Jiang Zhang ◽  
Minshu Yuan ◽  
...  

Few studies have focused on the combined impact of climate change, CO2, and land-use cover change (LUCC), especially the evaluation of the impact of LUCC on net primary productivity (NPP) in the future. In this study, we simulated the overall NPP change trend from 2010 to 2100 and its response to climatic factors, CO2 concentration, and LUCC conditions under three typical emission scenarios (Representative Concentration Pathway RCP2.6, RCP4.5, and RCP8.5). (1) Under the predicted global pattern, NPP showed an increasing trend, with the most prominent variation at the end of the century. The increasing trend is mainly caused by the positive effect of CO2 on NPP. However, the increasing trend of LUCC has only a small positive effect. (2) Under the RCP 8.5 scenario, from 2090 to 2100, CO2 has the most significant positive impact on tropical areas, reaching 8.328 Pg C Yr−1. Under the same conditions, climate change has the greatest positive impact on the northern high latitudes (1.175 Pg C Yr−1), but it has the greatest negative impact on tropical areas, reaching −4.842 Pg C Yr−1. (3) The average contribution rate of LUCC to NPP was 6.14%. Under the RCP8.5 scenario, LUCC made the largest positive contribution on NPP (0.542 Pg C Yr−1) globally from 2010 to 2020.


2020 ◽  
Author(s):  
Zhe Yuan ◽  
Yongqiang Wang ◽  
Jijun Xu ◽  
Jun Yin ◽  
Shu Chen

Abstract Background: The ecosystems and natural environment of the Source Region of Yangtze River (SRYR) is highly susceptible to the climate change. Quantifying the response of vegetation Net Primary Productivity (NPP) to the changes of hydrothermal conditions is an important way to identify and predict global ecosystem dynamics. Methods: Using MODIS/Terra Yearly NPP data at 1km×1km spatial resolution, the spatial-temporal variation of NPP was analyzed at first. Then, correlations between NPP and hydrothermal conditions were evaluated with soil water content and accumulated temperature. Finally, a response model was built to analyze the sensitivity of the NPP to precipitation and temperature changes. Result: (1) NPP is generally lower in the western SRYR and increases gradually toward the east, with an average value of 85.2 gC/m 2 . The total NPP had increased by 1.42TgC per year from 2000 to 2014. The fastest change rate of NPP is presented in the Downstream region, followed by the middle stream region and Dam River Basin; (2) the NPP of one specific year has obvious relationship with the accumulated temperature of the same year and the soil water deficit of the previous year. The temperature is the dominant climate factor impacting vegetation growth in the SRYR; (3) It is shown an increase of NPP by 0.194 TgC (nearly 30%) with a 1-°C increase in annual mean temperature. While a 10% increase in annual precipitation corresponds to an increase in NPP by 0.517 TgC (nearly 5%). Conclusion: A warming, wetting and greening SRYR was detected in recent decade. The NPP in SRYR is more sensitive to changes in temperature than changes in precipitation.


2016 ◽  
Vol 20 (2) ◽  
pp. 1-24 ◽  
Author(s):  
Aiwen Lin ◽  
Hongji Zhu ◽  
Lunche Wang ◽  
Wei Gong ◽  
Ling Zou

Abstract Measurements of air temperature and precipitation at 35 stations in Hubei Province, China, during 1962–2011 are used to investigate the regional climate change. There is an increasing trend for observed air temperature (0.23°C decade−1), which is slightly higher than that from multiple model simulations/predictions [phase 5 of CMIP (CMIP5) datasets] (0.16°C decade−1). The observed precipitation increases at the rate of 11.4 mm decade−1, while the CMIP5 results indicate a much lower decreasing trend (0.8 mm decade−1) in this region. To examine the ecological responses to the climate changes in Hubei Province, annual gross primary productivity (GPP) and net primary productivity (NPP) products during 2000–10 and leaf area index (LAI) products during 1981–2011 are also analyzed. It is discovered that GPP, NPP, and LAI increase at the rate of 1.8 TgC yr−1 yr−1, 1.1 TgC yr−1 yr−1, and 0.14 m2 m−2 decade−1, respectively. A linear model is further used to conduct the correlation analyses between climatic parameters (i.e., air temperature and precipitation) and ecological indicators (i.e., GPP, NPP, and LAI). The results indicate that the air temperature has a significant positive correlation with LAI (R2 = 0.311) and GPP (R2 = 0.189); precipitation is positively correlated with NPP (R2 = 0.209). Thus, it is concluded that the air temperature exerts a stronger effect on the ecosystem than precipitation in Hubei Province over the past decades.


2021 ◽  
Vol 13 (23) ◽  
pp. 13310
Author(s):  
Lei Hao ◽  
Shan Wang ◽  
Xiuping Cui ◽  
Yongguang Zhai

Understanding vegetation dynamics and their responses to climate change are essential to enhance the carbon sequestration of the terrestrial ecosystem under global warming. Although some studies have identified that there is a close relationship between vegetation net primary productivity and climate change, it is unclear whether this response exists in ecologically fragile areas, especially in Inner Mongolia, in which multiple ecological ecotones are related to vegetation types. This study uses the Carnegie–Ames–Stanford Approach (CASA) model to estimate vegetation NPP in Inner Mongolia from 2002 to 2019 and focuses on the spatial and temporal changes of NPP of different vegetation types and their responses to three typical climate factors: precipitation, temperature, and solar radiation. The results show that the NPP estimated by the CASA model agrees well with the observed NPP (R2 = 0.66, p < 0.001). The vegetation NPP in Inner Mongolia decreases gradually from northeast to southwest, and the average NPP is 223.50 gC ∙ m−2. From 2002 to 2019, the NPP of all vegetation types trended upward, but exhibiting different rates. The vegetation types, ranked in order of decreasing NPP, are forest, cropland, grassland, and desert. The NPP response of different vegetation types to climate factors possesses significant differences. The cropland NPP and grassland NPP are mainly affected by precipitation, the desert NPP is controlled by both precipitation and solar radiation, and the forest NPP is determined by all three climate factors.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tarun K. Thakur ◽  
Digvesh K. Patel ◽  
Anita Thakur ◽  
Anirudh Kumar ◽  
Arvind Bijalwan ◽  
...  

In recent decades, degradation and loss of the world’s forest ecosystems have been key contributors to biodiversity loss and future climate change. This article analyzes plant diversity, biomass, carbon sequestration potential (CSP), and the net primary productivity (NPP) of four vegetation types viz., Dense mixed forest (DMF); Open mixed forest (OMF); Teak plantation (TP), and Sal mixed forest (SMF) in the dry tropical forest ecosystem of central India through remote sensing techniques together with physical ground observations during 2013–2018. The total C storage in trees varied from 16.02 to 47.15 Mg ha−1 in studied vegetation types with the highest in DMF and lowest in OMF. The total C storage in stem wood, branches, and foliage falls in the range of 52.93–78.30%, 9.49–22.99%, and 3.31–12.89% respectively. The total standing biomass varied from 83.77 to 111.21 Mg ha−1 and these variations are due to different vegetation types, with the highest in DMF followed by TP, SMF while the lowest was estimated in OMF. The net primary productivity (NPP) [aboveground (AG) + belowground (BG)] varied from 7.61 to 9.94 Mg ha−1 yr−1 with mean values of 8.74 Mg ha−1 yr−1 where AG shares a maximum contribution of 77.66%. The total biomass production was distributed from 64.09 to 82.91% in AG and 17.08–35.91% in BG components. The present study outlines that the studied forest ecosystem has the substantial potential of carbon sequestration and a great possibility of mitigating local and global climate change.


Author(s):  
Roshan Kumar Mehta ◽  
Shree Chandra Shah

The increase in the concentration of greenhouse gases (GHGs) in the atmosphere is widely believed to be causing climate change. It affects agriculture, forestry, human health, biodiversity, and snow cover and aquatic life. Changes in climatic factors like temperature, solar radiation and precipitation have potential to influence agrobiodiversity and its production. An average of 0.04°C/ year and 0.82 mm/year rise in annual average maximum temperature and precipitation respectively from 1975 to 2006 has been recorded in Nepal. Frequent droughts, rise in temperature, shortening of the monsoon season with high intensity rainfall, severe floods, landslides and mixed effects on agricultural biodiversity have been experienced in Nepal due to climatic changes. A survey done in the Chitwan District reveals that lowering of the groundwater table decreases production and that farmers are attracted to grow less water consuming crops during water scarce season. The groundwater table in the study area has lowered nearly one meter from that of 15 years ago as experienced by the farmers. Traditional varieties of rice have been replaced in the last 10 years by modern varieties, and by agricultural crops which demand more water for cultivation. The application of groundwater for irrigation has increased the cost of production and caused severe negative impacts on marginal crop production and agro-biodiversity. It is timely that suitable adaptive measures are identified in order to make Nepalese agriculture more resistant to the adverse impacts of climate change, especially those caused by erratic weather patterns such as the ones experienced recently.DOI: http://dx.doi.org/10.3126/hn.v11i1.7206 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.59-63


2014 ◽  
Author(s):  
Peng Li ◽  
Jianhua Xu ◽  
Zhongsheng Chen ◽  
Benfu Zhao

Based on the hydrological and meteorological data of the upper reaches of Shiyang River basin in Northwest China from 1960 to 2009, this paper analyzed the change in runoff and its related climatic factors, and estimated the contribution of climate change and human activity to runoff change by using the moving T test, cumulative analysis of anomalies and multiple regression analysis. The results showed that temperature revealed a significant increasing trend, and potential evaporation capacity decreased significantly, while precipitation increased insignificantly in the past recent 50 years. Although there were three mutations in 1975, 1990 and 2002 respectively, runoff presented a slight decreasing trend in the whole period. The contributions of climate change and human activity to runoff change during the period of 1976-2009 were 45% and 55% respectively.


Sign in / Sign up

Export Citation Format

Share Document