scholarly journals Camera trap placement for evaluating species richness, abundance, and activity

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kamakshi S. Tanwar ◽  
Ayan Sadhu ◽  
Yadvendradev V. Jhala

AbstractInformation from camera traps is used for inferences on species presence, richness, abundance, demography, and activity. Camera trap placement design is likely to influence these parameter estimates. Herein we simultaneously generate and compare estimates obtained from camera traps (a) placed to optimize large carnivore captures and (b) random placement, to infer accuracy and biases for parameter estimates. Both setups recorded 25 species when same number of trail and random cameras (n = 31) were compared. However, species accumulation rate was faster with trail cameras. Relative abundance indices (RAI) from random cameras surrogated abundance estimated from capture-mark-recapture and distance sampling, while RAI were biased higher for carnivores from trail cameras. Group size of wild-ungulates obtained from both camera setups were comparable. Random cameras detected nocturnal activities of wild ungulates in contrast to mostly diurnal activities observed from trail cameras. Our results show that trail and random camera setup give similar estimates of species richness and group size, but differ for estimates of relative abundance and activity patterns. Therefore, inferences made from each of these camera trap designs on the above parameters need to be viewed within this context.

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kamakshi S. Tanwar ◽  
Ayan Sadhu ◽  
Yadvendradev V. Jhala

Oryx ◽  
2010 ◽  
Vol 44 (2) ◽  
pp. 219-222 ◽  
Author(s):  
Brian Gerber ◽  
Sarah M. Karpanty ◽  
Charles Crawford ◽  
Mary Kotschwar ◽  
Johnny Randrianantenaina

AbstractDespite major efforts to understand and conserve Madagascar’s unique biodiversity, relatively little is known about the island’s carnivore populations. We therefore deployed 43 camera-trap stations in Ranomafana National Park, Madagascar during June–August 2007 to evaluate the efficacy of this method for studying Malagasy carnivores and to estimate the relative abundance and density of carnivores in the eastern rainforest. A total of 755 camera-trap nights provided 1,605 photographs of four endemic carnivore species (fossa Cryptoprocta ferox, Malagasy civet Fossa fossana, ring-tailed mongoose Galidia elegans and broad-striped mongoose Galidictus fasciata), the exotic Indian civet Viverricula indica and the domestic dog Canis familiaris. We identified 38 individual F. fossana and 10 individual C. ferox. We estimated density using both capture-recapture analyses, with a buffer of full mean-maximum-distance-moved, and a spatially-explicit maximum-likelihood method (F. fossana: 3.03 and 2.23 km-2, respectively; C. ferox: 0.15 and 0.17 km-2, respectively). Our estimated densities of C. ferox in rainforest are lower than published estimates for conspecifics in the western dry forests. Within Ranomafana National Park species richness of native carnivores did not vary among trail systems located in secondary, selectively-logged and undisturbed forest. These results provide the first assessment of carnivore population parameters using camera-traps in the eastern rainforests of Madagascar.


Check List ◽  
2020 ◽  
Vol 16 (5) ◽  
pp. 1229-1237
Author(s):  
Meshach A. Pierre ◽  
Leroy Ignacio ◽  
Evi A. D. Paemelaere

Large mammals are key contributors to forest ecosystems globally, but Neotropical mammal populations are understudied. We employed remotely triggered camera traps and track surveys to assess the mammal community in the newly accessible upper Berbice region of Guyana. In a cumulative 2,821 trap nights between two camps and 14 km of track surveys we recorded 18 species of mammals. Camera trap records showed that Red-Rumped Agouti (Dasyprocta leporina (Linnaeus, 1758)) featured the highest relative abundance at both camps, while Tayra (Eira barbara (Linnaeus, 1758)), Amazonian Brown Brocket Deer (Mazama nemorivaga (F. Cuvier, 1817)), Giant Anteater (Myrmecophaga tridactyla (Linnaeus, 1758)) and Giant Armadillo (Priodontes maximus (Kerr, 1792)) the lowest. We also report naïve occupancy estimates. Detections of threatened and disturbance sensitive species indicate that the study site has a high biodiversity value. We provide recommendations for further study in this recently disturbed ecosystem and other understudied regions of Guyana.


2019 ◽  
Vol 46 (1) ◽  
pp. 37 ◽  
Author(s):  
Clara C. Lepard ◽  
Remington J. Moll ◽  
Jonathon D. Cepek ◽  
Patrick D. Lorch ◽  
Patricia M. Dennis ◽  
...  

Context The use of camera traps in ecological research has grown exponentially over the past decade, but questions remain about the effect of camera-trap settings on ecological inference. The delay-period setting controls the amount of time that a camera trap is idle between motion-activated triggers. Longer delay periods may potentially extend battery life, reduce data-storage requirements, and shorten data-analysis time. However, they might result in lost data (i.e. missed wildlife detections), which could bias ecological inference and compromise research objectives. Aims We aimed to examine the effect of the delay period on (1) the number of camera-trap triggers, (2) detection and site-occupancy probabilities for eight mammalian species that varied in size, movement rate and commonness and (3) parameter estimates of habitat-based covariates from the occupancy models for these species. Methods We deployed 104 camera traps for 4 months throughout an extensive urban park system in Cleveland, Ohio, USA, using a spatially random design. Using the resultant data, we simulated delay periods ranging from 10s to 60min. For each of these delay periods and for each of our eight focal species, we calculated the number of camera-trap triggers and the parameter estimates of hierarchical Bayesian occupancy models. Key results A simulated increase in the delay period from 10s to 10min decreased the number of triggers by 79.6%, and decreased detection probability and occupancy probability across all species by 1.6% and 4.4% respectively. Further increases in the delay period (i.e. from 10 to 60min) resulted in modest additional reductions in the number of triggers and detection and occupancy probabilities. Variation in the delay period had negligible effects on the qualitative interpretations of habitat-based occupancy models for all eight species. Conclusions Our results suggest that delay-period settings ranging from 5 to 10min can drastically reduce data-storage needs and analysis time without compromising inference resulting from occupancy modelling for a diversity of mammalian species. Implications Broadly, we provide guidance on designing camera-trap studies that optimally trade-off research effort and potential bias, thereby increasing the utility of camera traps as ecological research tools.


2017 ◽  
Vol 23 (1) ◽  
pp. 43 ◽  
Author(s):  
J. Smith ◽  
S. Legge ◽  
A. James ◽  
K. Tuft

Camera traps are being increasingly used in biological surveys. One of the most common uses of camera trap data is the generation of species inventories and estimations of species richness. Many authors have advocated for increased camera trap-nights (long deployment times or more cameras in an array) to detect rare or wide-ranging species. However, in practice, the number of traps and the duration of surveys are constrained; a survey leader must make decisions about allocating the available cameras to sites. Here we investigate the effect of deployment time, camera array size and number of sites on detection of saxicoline mammal and varanid species obtained from surveys of discrete vegetation pockets in tropical Australia. This paper provides an analysis method for optimising decisions about how a limited number of cameras should be deployed across sites. We found that increasing the number of sites leads to larger species richness estimates in a shorter period. Increasing the number of cameras per site also leads to higher species richness estimates in a shorter time, but not to the same extent as increasing the number of sites. With fewer sites used or smaller arrays deployed at each site, a longer deployment duration is required, especially for rarer or wider-ranging species, or those not attracted to bait. Finally, we compared estimates of species richness generated by our camera trapping to those generated by live trapping at a subset of our sites, and found camera traps generated much larger estimates.


2018 ◽  
Vol 10 (13) ◽  
pp. 12792-12799
Author(s):  
Anupama Saha ◽  
Susmita Gupta

Aquatic and semiaquatic Hemiptera bugs play significant ecological roles, and they are important indicators and pest control agents.  Little information is currently available concerning its populations in southern Assam.  This study assessed hemipterans in four sites of Sonebeel, the largest wetland in Assam (3458.12 ha at full storage level), situated in Karimganj District.  The major inflow and outflow of the wetland are the rivers Singla and Kachua, respectively (the Kachua drains into the Kushiyara River).  Samples were trapped with pond nets and were seasonally recorded.  This study recorded a total of 28 species of aquatic and semiaquatic hemipterans belonging to 20 genera under nine families.  Population, geographical and environmental data (e.g., rainfall) were used to assess the relative abundance of species, species richness and different diversity indices, and species distribution. 


Mammalia ◽  
2016 ◽  
Vol 80 (1) ◽  
Author(s):  
Mariano S. Sánchez

AbstractI evaluated bat assemblages in terms of species richness, relative abundance, trophic guild structure, and seasonal changes at three sites along of the Southern Yungas forests. A total of 854 individuals were captured, representing 25 species of three families, with an effort of 27,138 m of mist net opened per hour. Subtropical assemblages showed a similar structure to those from tropical landmark, with a dominance of frugivorous Phyllostomid; in addition, a few species were abundant, followed by a long tail of less common species. However, subtropical sites differed due to the dominance of the genus


2009 ◽  
Vol 39 (11) ◽  
pp. 2100-2108 ◽  
Author(s):  
Patti Newell ◽  
Sammy King

Partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife. However, partial cutting may or may not benefit species dependent on deadwood; harvesting can supplement coarse woody debris in the form of logging slash, but standing dead trees may be targeted for removal. We sampled cerambycid beetles during the spring and summer of 2006 and 2007 with canopy malaise traps in 1- and 2-year-old partial cut and uncut bottomland hardwood forests of Louisiana. We captured a total of 4195 cerambycid beetles representing 65 species. Relative abundance was higher in recent partial cuts than in uncut controls and with more dead trees in a plot. Total species richness and species composition were not different between treatments. The results suggest partial cuts with logging slash left on site increase the abundance of cerambycid beetles in the first few years after partial cutting and that both partial cuts and uncut forest should be included in the bottomland hardwood forest landscape.


2018 ◽  
Vol 18 (3) ◽  
Author(s):  
André Luis Moura Botelho ◽  
Luiz Henrique Medeiros Borges ◽  
Brian McFarland

Abstract: The implementation of private areas focused on conservation of species and habitats, combined with REDD+ policies, has become an important ally for biodiversity conservation, expanding the conservation areas of the most varied habitats, covering key groups such as large mammals, which are extremely important for the maintenance of ecosystem services. In the upper region of the Purus River in Acre, Brazil, an inventory was carried out using camera-traps, of medium and large mammals community in a private REDD+ area, known as the Purus Project. A total of 19 species of mammals were recorded with an effort of 1859 trap-nigths, including rare, endangered and key species. It is estimated that the richness for the area is of 22 species. Endangered and rare species such as the tapir (Tapirus terrestris) and the short-eared dog (Atelocynus microtis) presented high rates of relative abundance compared to other Conservation Units (UCs). The richness of medium to large-sized mammals recorded in the Purus Project underscores the importance of REDD+ in private areas for the conservation of this group, given the challenges for inclusion and creation of new protected areas. REDD+ projects in privates' areas become an important component for conservation of species and the connection between public conservation units favoring the spread of species and populations between areas, and consequently the gene flow.


Sign in / Sign up

Export Citation Format

Share Document