scholarly journals CXCR4 blockade reduces the severity of murine heart allograft rejection by plasmacytoid dendritic cell-mediated immune regulation

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian Fu ◽  
Christian H. K. Lehmann ◽  
Xinning Wang ◽  
Mandy Wahlbuhl ◽  
Ida Allabauer ◽  
...  

AbstractAllograft-specific regulatory T cells (Treg cells) are crucial for long-term graft acceptance after transplantation. Although adoptive Treg cell transfer has been proposed, major challenges include graft-specificity and stability. Thus, there is an unmet need for the direct induction of graft-specific Treg cells. We hypothesized a synergism of the immunotolerogenic effects of rapamycin (mTOR inhibition) and plerixafor (CXCR4 antagonist) for Treg cell induction. Thus, we performed fully-mismatched heart transplantations and found combination treatment to result in prolonged allograft survival. Moreover, fibrosis and myocyte lesions were reduced. Although less CD3+ T cell infiltrated, higher Treg cell numbers were observed. Noteworthy, this was accompanied by a plerixafor-dependent plasmacytoid dendritic cells-(pDCs)-mobilization. Furthermore, in vivo pDC-depletion abrogated the plerixafor-mediated Treg cell number increase and reduced allograft survival. Our pharmacological approach allowed to increase Treg cell numbers due to pDC-mediated immune regulation. Therefore pDCs can be an attractive immunotherapeutic target in addition to plerixafor treatment.

Zygote ◽  
1997 ◽  
Vol 5 (4) ◽  
pp. 309-320 ◽  
Author(s):  
Rabindranath de la Fuente ◽  
W. Allan King

SummaryThe mammalian blastocyst comprises an inner cell mass (ICM) and a trophectoderm cell layer. In this study the allocation of blastomeres to either cell lineage was compared between murine, porcine and bovine blastocysts. Chemical permeation of trophectoderm cells by the Ca2+ ionophore A23187 in combination with DNA-specific fluorochromes resulted in the differential staining of trophectoderm and ICM. Confocal microscopy confirmed the exclusive permeation of trophectoderm and the internal localisation of intact ICM cells in bovine blastocysts. Overall, differential cell counts were obtained in approximately 85% of the embryos assessed. Mean (±SEM) total cell numbers were 72.2 ± 3.1 and 93.1±5 for in vivo derived murine (n = 41) and porcine (n = 21) expanded blastocysts, respectively. Corresponding ICM cell number counts revealed ICM/total cell number ratios of 0.27 and 0.21, respectively. Comparison of in vivo (n = 20) and in vitro derived bovine embryos on day 8 (n = 29) or day 9 (n = 29) revealed a total cell number of 195.25±9.9, 166.14±9.9 and 105±6.7 at the expanded blastocyst stage with corresponding ICM/total cell ratios of 0.27, 0.23 and 0.23, respectively. While total cell numbers differed significantly among the three groups of bovine embryos (p<0.05), the ICM/total cell ratio did not. These results indicate that a similar proportion of cells is allocated to the ICM among blastocysts of genetically divergent species.


2004 ◽  
Vol 16 (2) ◽  
pp. 186
Author(s):  
J.O. Gjørret ◽  
P. Maddox-Hyttel

Regulation of apoptosis may be affected by factors during preimplantation development, and this is possibly related to embryo developmental potential. Here we investigate differences in the incidence of apoptotic nuclei in Day 7 bovine blastocysts produced by two different in vivo and three different in vitro methods. In vivo embryos were produced either by a regular superovulation procedure (reg group; n=29; Laurincik et al., 2003, Mol. Reprod. Dev. 65, 73–85), or by postponement of the LH surge (pp group; n=35; van de Leemput et al., 2001, Therio. 55, 573–592). In vitro embryos were derived from systems using either co-culture (cc group; n=30, Avery and Greve 2000, Mol. Reprod. Dev. 55, 438–445), or culture in synthetic oviduct fluid (SOF) with (S+group; n=35) or without serum (S− group; n=38; Holm et al., 1999, Theriogenology, 52, 683–700). Embryos were collected at approx. 168h post ovulation/insemination and subjected to chromatin staining and detection of DNA degradation by TUNEL reaction. The total number of nuclei, number of nuclei displaying apoptotic morphology (+M), number of nuclei displaying TUNEL reaction (+T), and number of nuclei displaying both markers simultaneously (M&amp;T) were scored according to J.O. Gjørret et al. (2003 Biol. Reprod. 69. in press). Only M&amp;T nuclei were regarded as apoptotic, and +M, +T, and apoptotic (M&amp;T) indices (%) were calculated for the trophoblast (tb), inner cell mass (i) and the total blastocysts (t) in each group. Significant differences were observed for all parameters when all groups were compared (ANOVA, P ranging from 0.024 to&lt;0.0001). Highest number of total nuclei were observed in the S+ group, whereas the lowest indices were observed in the pp group, which had significant lower indices in the i and t than in the reg., S+ and S− groups P&lt;0.05; Tukey’s post test for ANOVA). Highest indices were generally observed in the S− group. The results demonstrate that not only embryo cell numbers but also incidences of apoptotic markers are affected by the mode of production. However, in Day 7 bovine blastocysts high cell number is not consistent with a low incidence of apoptosis. Even though cell numbers appeared comparable in the two in vivo groups, their incidences of apoptosis were different, and the reg group displayed indices comparable to the in vitro groups, highlighting the importance of ovulation protocols when in vivo embryos are used as reference material in general. Table 1


2005 ◽  
Vol 14 (2-3) ◽  
pp. 139-149 ◽  
Author(s):  
C. L. Stabler ◽  
R. C. Long ◽  
I. Constantinidis ◽  
A. Sambanis

Direct, noninvasive monitoring of tissue engineered substitutes containing live, functional cells would provide valuable information on dynamic changes that occur postimplantation. Such changes include remodeling both within the construct and at the interface of the implant with the surrounding host tissue, and may result in changes in the number of viable cells in the construct. This study investigated the use of 1H NMR spectroscopy in noninvasively monitoring the viable cell number within a tissue engineered construct in vivo. The construct consisted of mouse βTC3 insulinomas in a disk-shaped agarose gel, surrounded by a cell-free agarose gel layer. Localized 1H NMR spectra were acquired from within implanted constructs, and the total choline resonance was measured. Critical issues that had to be addressed in accurately quantifying total choline from the implanted cells included avoiding signal from host tissue and correcting for interfering signal from diffusing solutes. In vivo NMR measurements were correlated with MTT assays and NMR measurements performed in vitro on explanted constructs. Total choline measurements accurately and noninvasively quantified viable βTC3 cell numbers in vivo, in the range of 1 × 106 to more than 14 × 106 cells, and monitored changes in viable cell number that occurred in the same construct over time. This is the first study using NMR techniques to monitor viable cell numbers in an implanted tissue substitute. It established architectural characteristics that a construct should have to be amenable to NMR monitoring, and it set the foundation for future in vivo investigations with other tissue engineered implants.


2007 ◽  
Vol 19 (1) ◽  
pp. 166
Author(s):  
D. Yamaguchi ◽  
W. Suzuki ◽  
N. Adachi ◽  
S. Akagi ◽  
S. Watanabe ◽  
...  

A low pregnancy rate and high frequency of abortion are observed in bovine somatic cell cloning. It is suggested that one of the factors is the low cell number of nuclear-transferred (NT) embryos at the blastocyst stage compared with that of in vivo-derived embryos. We reported that aggregation of bovine NT embryos can develop to blastocysts with cell numbers that are equivalent to in vivo-derived embryos (Akagi et al. 2005 Reprod. Fertil. Dev. 17, 162 abst). In this study, we examined the in vivo development of aggregates of NT embryos after embryo transfer (ET). Following culture in serum-starved medium for 5 to 7 days, fibroblast cells were used as donor cells for NT. NT was performed as previously described (Akagi et al. 2003 Mol. Reprod. Dev. 66, 264–272). Eight-cell stage embryos on Day 2 or 16- to 32-cell stage embryos on Day 4 were used for embryo aggregation after removal of the zona pellucida. Three NT embryos were placed into the depression in a drop of TCM-199 with 50 µg mL−1 phytohemagglutinin for 20 min, and NT aggregates were then moved into the depression in a drop of IVD-101 (Akagi et al. 2005). On Day 7 after NT, ET was performed nonsurgically. Results are summarized in Table 1. Pregnancy rates obtained with the aggregated NT embryos tended to be high compared with the single NT embryos. All pregnant cows in the single NT embryos and 6 of 8 pregnant cows in the aggregated NT embryos were aborted within 90 days. One cow carrying an aggregate of 3 Day 2 NT embryos went to term, and one carrying an aggregate of 3 Day 4 NT embryos is still pregnant at more than 7 months. These results demonstrate that aggregates of 3 NT embryos can develop to term in cattle. Table 1.In vivo development of aggregated NT embryos


Reproduction ◽  
2004 ◽  
Vol 127 (2) ◽  
pp. 165-177 ◽  
Author(s):  
A Kidson ◽  
F J Rubio-Pomar ◽  
A Van Knegsel ◽  
H T A Van Tol ◽  
W Hazeleger ◽  
...  

GH receptor (GHR) mRNA is expressed in bovine in vitro produced embryos up to the blastocyst stage and GH improves the quality of bovine embryos by increasing blastocyst cell numbers and reducing the incidence of apoptosis as evaluated by DNA strand-break labelling. Porcine in vitro produced blastocysts have lower cell numbers than in vivo blastocysts and exhibit higher incidences of apoptosis. Therefore we investigated the effects of 100 ng GH/ml NCSU23 medium during in vitro culture of presumptive in vitro fertilized sow zygotes on embryo development and blastocyst quality (defined by diameter, cell number, apoptosis and survival after non-surgical transfer). In vivo produced blastocysts were analysed concurrently as a reference value. GHR was expressed in embryos from the 2-cell to blastocyst stages. GH had no effect on blastocyst development or cell numbers, but increased the mean blastocyst diameter. The incidence of apoptosis, detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL), was decreased by GH, but when non-TUNEL-labelled apoptotic fragmented nuclei were included, no difference was seen. GH appeared to slow down the progression of apoptosis though. In vivo produced blastocysts presented no apoptotic nuclei, and contained higher cell numbers and larger diameters. Pregnancy rates on day 11 were similar for all groups, but survival was poorer for in vitro than in vivo produced blastocysts. In this study GH appeared to be beneficial only from the blastocyst stage, but the presence of GHR from early cleavage stages nevertheless indicates a role for GH throughout porcine embryo development and deserves further investigation.


Reproduction ◽  
2004 ◽  
Vol 127 (6) ◽  
pp. 669-677 ◽  
Author(s):  
G Wycherley ◽  
D Downey ◽  
M T Kane ◽  
A C Hynes

This study reports a novel, simple method for culture of mouse follicles which results in follicles with cell numbers similar toin vivofully grown follicles. Using this method, follicles (180–240 μm in diameter) were cultured in a 100 μl inverted drop of medium without oil and compared with culture in upright drops with and without a mineral oil overlay. Follicles, isolated from C57BL/6 × CBA/ca crossbred and MF1 inbred mice, were cultured individually at 37 °C in 96-well round-bottomed suspension cell tissue culture plates for 6 days. Follicles grown in the inverted drop culture system reached a markedly higher final diameter (means±s.e.m.; 471 ± 6.0 μm) as compared with the upright with oil (363 ± 2.7 μm) and without oil (358 ± 4.0) systems. There was no significant effect of mouse strain on follicle diameter. Follicular secretion of oestradiol and lactate into the medium was measured on days 2, 4 and 6 of culture. Secretion of oestradiol per follicle on day 6 was 2.49 ± 0.45 ng in the inverted and 0.90 ± 0.17 ng in the upright without oil system (P< 0.001). Follicular secretion of lactate on a per unit of follicle volume basis remained constant in the inverted system over days 2, 4 and 6 and was less (P< 0.001) than secretion in both the upright with and without oil systems. Follicle cell proliferation was markedly increased in the inverted as compared with the upright with oil system; the increases in cell numbers were significant on day 3 (P< 0.01) and on all subsequent days (P< 0.001). These results are discussed in relation to the supply of oxygen to the follicle in culture.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hélène Letscher ◽  
Viviane A. Agbogan ◽  
Sarantis Korniotis ◽  
Pauline Gastineau ◽  
Emmanuel Tejerina ◽  
...  

AbstractEarly innate education of hematopoietic progenitors within the bone marrow (BM) stably primes them for either trained immunity or instead immunoregulatory functions. We herein demonstrate that in vivo or in vitro activation within the BM via Toll-like receptor-9 generates a population of plasmacytoid dendritic cell (pDC) precursors (CpG-pre-pDCs) that, unlike pDC precursors isolated from PBS-incubated BM (PBS-pre-pDCs), are endowed with the capacity to halt progression of ongoing experimental autoimmune encephalomyelitis. CpG activation enhances the selective migration of pDC precursors to the inflamed spinal cord, induces their immediate production of TGF-β, and after migration, of enhanced levels of IL-27. CpG-pre-pDC derived TGF-β and IL-27 ensure protection at early and late phases of the disease, respectively. Spinal cords of CpG-pre-pDC-protected recipient mice display enhanced percentages of host-derived pDCs expressing TGF-β as well as an accumulation of IL-10 producing B cells and of CD11c+ CD11b+ dendritic cells. These results reveal that pDC precursors are conferred stable therapeutic properties by early innate activation within the BM. They further extend to the pDC lineage promising perspectives for cell therapy of autoimmune diseases with innate activated hematopoietic precursor cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Simon Chewchuk ◽  
Sanzida Jahan ◽  
David Lohnes

AbstractThe intestinal epithelium is a unique tissue, serving both as a barrier against pathogens and to conduct the end digestion and adsorption of nutrients. As regards the former, the intestinal epithelium contains a diverse repertoire of immune cells, including a variety of resident lymphocytes, macrophages and dendritic cells. These cells serve a number of roles including mitigation of infection and to stimulate regeneration in response to damage. The transcription factor Cdx2, and to a lesser extent Cdx1, plays essential roles in intestinal homeostasis, and acts as a context-dependent tumour suppressor in colorectal cancer. Deletion of Cdx2 from the murine intestinal epithelium leads to macrophage infiltration resulting in a chronic inflammatory response. However the mechanisms by which Cdx2 loss evokes this response are poorly understood. To better understand this relationship, we used a conditional mouse model lacking all intestinal Cdx function to identify potential target genes which may contribute to this inflammatory phenotype. One such candidate encodes the histocompatability complex protein H2-T3, which functions to regulate intestinal iCD8α lymphocyte activity. We found that Cdx2 occupies the H3-T3 promoter in vivo and directly regulates its expression via a Cdx response element. Loss of Cdx function leads to a rapid and pronounced attenuation of H2-T3, followed by a decrease in iCD8α cell number, an increase in macrophage infiltration and activation of pro-inflammatory cascades. These findings suggest a previously unrecognized role for Cdx in intestinal homeostasis through H2-T3-dependent regulation of iCD8α cells.


2003 ◽  
Vol 33 (10) ◽  
pp. 1905-1914 ◽  
Author(s):  
Irina P Panyushkina ◽  
Malcolm K Hughes ◽  
Eugene A Vaganov ◽  
Martin AR Munro

We reconstructed air temperature for two periods in the growth season from cell dimension and cell number variability in cross-dated tree rings of Larix cajanderi Mayr. from northeastern Siberia. Thirteen tree-ring chronologies based on cell size, cell wall thickness, and cell number were developed for AD 1642–1993. No clear evidence was found of an age-related trend in cell dimensions in the sampled materials, but cell numbers were correlated with cambial age. The chronologies contain strong temperature signals associated with the timing of xylem growth. We obtained reliable reconstructions of mean June temperature from the total cell number and July–September temperature from the cell wall thickness of latewood. June temperature and July–September temperature covaried for most of the period from AD 1642 to AD 1978. After that time, June temperature became cooler relative to July–September temperature. This difference caused disproportional changes in earlywood tracheids because of the late start of growth and cool conditions in June followed by warming during the rest of the season. The identification of this unusual recent change has shown that intraseasonal resolution may be achieved by cell dimension and cell number chronologies.


2016 ◽  
Vol 113 (9) ◽  
pp. 2514-2519 ◽  
Author(s):  
Drew L. Sellers ◽  
Jamie M. Bergen ◽  
Russell N. Johnson ◽  
Heidi Back ◽  
John M. Ravits ◽  
...  

A significant unmet need in treating neurodegenerative disease is effective methods for delivery of biologic drugs, such as peptides, proteins, or nucleic acids into the central nervous system (CNS). To date, there are no operative technologies for the delivery of macromolecular drugs to the CNS via peripheral administration routes. Using an in vivo phage-display screen, we identify a peptide, targeted axonal import (TAxI), that enriched recombinant bacteriophage accumulation and delivered protein cargo into spinal cord motor neurons after intramuscular injection. In animals with transected peripheral nerve roots, TAxI delivery into motor neurons after peripheral administration was inhibited, suggesting a retrograde axonal transport mechanism for delivery into the CNS. Notably, TAxI-Cre recombinase fusion proteins induced selective recombination and tdTomato-reporter expression in motor neurons after intramuscular injections. Furthermore, TAxI peptide was shown to label motor neurons in the human tissue. The demonstration of a nonviral-mediated delivery of functional proteins into the spinal cord establishes the clinical potential of this technology for minimally invasive administration of CNS-targeted therapeutics.


Sign in / Sign up

Export Citation Format

Share Document