inner cell mass
Recently Published Documents


TOTAL DOCUMENTS

1018
(FIVE YEARS 203)

H-INDEX

74
(FIVE YEARS 6)

Author(s):  
Xiaosu Miao ◽  
Wei Cui

Abstract Female infertility is a heterogeneous disorder with a variety of complex causes, including inflammation and oxidative stress, which are also closely associated with the pathogenesis of Polycystic Ovary Syndrome (PCOS). As a new treatment for PCOS, berberine (BER), a natural compound from Berberis, has been clinically applied recently. However, the mechanisms underlying the association between BER and embryogenesis are still largely unknown. In this study, effects of BER on preimplantation development was evaluated by using both normal and inflammatory culture conditions induced by lipopolysaccharide (LPS) in the mouse. Our data first suggest that BER itself (25 nM) does not affect embryo quality or future developmental potency, moreover, it can effectively alleviate LPS-induced embryonic damage by mitigating apoptosis via ROS−/caspase-3-dependent pathways and by suppressing pro-inflammatory cytokines via inhibition of NF-κB signaling pathway during preimplantation embryo development. In addition, skewed cell lineage specification in inner cell mass (ICM) and primitive endoderm (PE) caused by LPS can also be successfully rescued with BER. In summary, these findings for the first time demonstrate the non-toxicity of low doses of BER and its anti-apoptotic and anti-oxidative properties on embryonic cells during mammalian preimplantation development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chien-Hong Chen ◽  
Chun-I Lee ◽  
Chun-Chia Huang ◽  
Hsiu-Hui Chen ◽  
Shu-Ting Ho ◽  
...  

Avoiding aneuploid embryo transfers has been shown to improve pregnancy outcomes in patients with implantation failure and pregnancy loss. This retrospective cohort study aims to analyze the correlation of time-lapse (TL)-based variables and numeric blastocyst morphological scores (TLBMSs) with different mosaic levels. In total, 918 biopsied blastocysts with time-lapse assessments at a uniform time-point were subjected to next-generation sequencing–based preimplantation genetic testing for aneuploidy. In consideration of patient- and cycle-related confounding factors, all redefined blastocyst morphology components of low-grade blastocysts, that is, expansion levels (odds ratio [OR] = 0.388, 95% confidence interval [CI] = 0.217–0.695; OR = 0.328, 95% CI = 0.181–0.596; OR = 0.343, 95% CI = 0.179–0.657), inner cell mass grades (OR = 0.563, 95% CI = 0.333–0.962; OR = 0.35, 95% CI = 0.211–0.58; OR = 0.497, 95% CI = 0.274–0.9), and trophectoderm grades (OR = 0.29, 95% CI = 0.178–0.473; OR = 0.242, 95% CI = 0.143–0.411; OR = 0.3, 95% CI = 0.162–0.554), were less correlated with mosaic levels ≤20%, <50%, and ≤80% as compared with those of top-grade blastocysts (p < 0.05). After converting blastocyst morphology grades into scores, high TLBMSs were associated with greater probabilities of mosaic levels ≤20% (OR = 1.326, 95% CI = 1.187–1.481), <50% (OR = 1.425, 95% CI = 1.262–1.608), and ≤80% (OR = 1.351, 95% CI = 1.186–1.539) (p < 0.001). The prediction abilities of TLBMSs were similar for mosaic levels ≤20% (AUC = 0.604, 95% CI = 0.565–0.642), <50% (AUC = 0.634, 95% CI = 0.598–0.671), and ≤80% (AUC = 0.617, 95% CI = 0.576–0.658). In conclusion, detailed evaluation with TL monitoring at the specific time window reveals that redefined blastocyst morphology components and converted numeric TLBMSs are significantly correlated with all of the threshold levels of mosaicism. However, the performance of TLBMSs to differentiate blastocysts with aberrant ploidy risk remains perfectible.


2021 ◽  
Vol 2 ◽  
Author(s):  
Lydia K. Wooldridge ◽  
Alan D. Ealy

Previous work determined that bovine interleukin-6 (IL6) increases inner cell mass (ICM), primitive endoderm (PE), and total cell number in in vitro produced (IVP) bovine blastocysts. Another IL6 family member, leukemia inhibitory factor (LIF), has the potential to produce the same effects of IL6 due to the presence of its receptor in bovine blastocysts. We compared the abilities of LIF and IL6 to increase ICM cell numbers in day 7, 8, and 9 IVP bovine blastocysts. Supplementation with 100 ng/ml LIF from day 5 onward improved blastocyst formation rates on days 7 and 8 similar to what was observed when supplementing 100 ng/ml IL6. However, LIF supplementation did not cause an increase in ICM numbers like was observed after supplementing IL6. On day 9, increases in PE cell numbers were detected after LIF supplementation, but 300 ng/ml LIF was required to achieve the same effect on PE numbers that was observed by providing 100 ng/ml IL6. Collectively, these results show that LIF can mimic at least some of the effects of IL6 in bovine blastocyst.


Development ◽  
2021 ◽  
Author(s):  
Esther Jeong Yoon Kim ◽  
Lydia Sorokin ◽  
Takashi Hiiragi

Development entails patterned emergence of diverse cell types within the embryo. In mammals, cells positioned inside the embryo give rise to the inner cell mass (ICM) that eventually forms the embryo proper. Yet the molecular basis of how these cells recognise their ‘inside’ position to instruct their fate is unknown. Here we show that provision of extracellular matrix (ECM) to isolated embryonic cells induces ICM specification and alters subsequent spatial arrangement between epiblast (EPI) and primitive endoderm (PrE) cells that emerge within the ICM. Notably, this effect is dependent on integrin β1 activity and involves apical to basal conversion of cell polarity. We demonstrate that ECM-integrin activity is sufficient for ‘inside’ positional signalling and it is required for proper EPI/PrE patterning. Our findings thus highlight the significance of ECM-integrin adhesion in enabling position-sensing by cells to achieve tissue patterning.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260123
Author(s):  
Edgar Joel Soto-Moreno ◽  
Ahmed Balboula ◽  
Christine Spinka ◽  
Rocío Melissa Rivera

Serum supplementation during bovine embryo culture has been demonstrated to promote cell proliferation and preimplantation embryo development. However, these desirable outcomes, have been associated with gene expression alterations of pathways involved in macroautophagy, growth, and development at the blastocyst stage, as well as with developmental anomalies such as fetal overgrowth and placental malformations. In order to start dissecting the molecular pathways by which serum supplementation of the culture medium during the preimplantation stage promotes developmental abnormalities, we examined blastocyst morphometry, inner cell mass and trophectoderm cell allocations, macroautophagy, and endoplasmic reticulum stress. On day 5 post-insemination, > 16 cells embryos were selected and cultured in medium containing 10% serum or left as controls. Embryo diameter, inner cell mass and trophectoderm cell number, and macroautophagy were measured on day 8 blastocysts (BL) and expanded blastocysts (XBL). On day 5 and day 8, we assessed transcript level of the ER stress markers HSPA5, ATF4, MTHFD2, and SHMT2 as well as XBP1 splicing (a marker of the unfolded protein response). Serum increased diameter and proliferation of embryos when compared to the no-serum group. In addition, serum increased macroautophagy of BL when compared to controls, while the opposite was true for XBL. None of the genes analyzed was differentially expressed at any stage, except that serum decreased HSPA5 in day 5 > 16 cells stage embryos. XBP1 splicing was decreased in BL when compared to XBL, but only in the serum group. Our data suggest that serum rescues delayed embryos by alleviating endoplasmic reticulum stress and promotes development of advanced embryos by decreasing macroautophagy.


2021 ◽  
Author(s):  
Hongling Zhang ◽  
Yuanyuan Li ◽  
Yongjian Ma ◽  
Chongping Lai ◽  
Qian Yu ◽  
...  

AbstractThe use of two inhibitors of Mek1/2 and Gsk3β (2i) promotes the generation of mouse diploid and haploid embryonic stem cells (ESCs) from the inner cell mass of biparental and uniparental blastocysts, respectively. However, a system enabling long-term maintenance of imprints in ESCs has proven challenging. Here, we report that the use of a two-step a2i (alternative two inhibitors of Src and Gsk3β, TSa2i) derivation/culture protocol results in the establishment of androgenetic haploid ESCs (AG-haESCs) with stable DNA methylation at paternal DMRs (differentially DNA methylated regions) up to passage 60 that can efficiently support generating mice upon oocyte injection. We also show coexistence of H3K9me3 marks and ZFP57 bindings with intact DMR methylations. Furthermore, we demonstrate that TSa2i-treated AG-haESCs are a heterogeneous cell population regarding paternal DMR methylation. Strikingly, AG-haESCs with late passages display increased paternal-DMR methylations and improved developmental potential compared to early-passage cells, in part through the enhanced proliferation of H19-DMR hypermethylated cells. Together, we establish AG-haESCs that can long-term maintain paternal imprints.


2021 ◽  
Author(s):  
Emilie Derisoud ◽  
Luc Jouneau ◽  
Clothilde Gourtay ◽  
Anne Margat ◽  
Catherine Archilla ◽  
...  

As sport career is a priority in most of equine breeds, mares are frequently bred for the first time at an advanced age. Both age and first gestation were shown to have a deleterious effect on reproduction outcomes, respectively on fertility and offspring weight but the effect mare's parity in older mares on embryo quality has never been considered. The aim of this project was to determine the effect of old mare's nulliparity on gene expression in embryos. Day 8 post ovulation embryos were collected from old (10-16 years old) nulliparous (ON, N=5) or multiparous (OM, N=6) non-nursing Saddlebred mares, inseminated with the semen of one stallion. Pure (TE_part) or inner cell mass enriched (ICMandTE) trophoblast were obtained by embryo bisection and paired end, non-oriented RNA sequencing (Illumina, NextSeq500) was performed on each hemi-embryo. To discriminate gene expression in the ICM from that in the TE, deconvolution (DeMixT R package) was used on the ICMandTE dataset. Differential expression was analyzed (DESeq2) with embryo sex and diameter as cofactors using a false discovery rate <0.05 cutoff. Although the expression of only a few genes was altered by mare's nulliparity (33 in ICM and 23 in TE), those genes were related to nutrient exchanges and responses to environment signaling, both in ICM and TE, suggesting that the developing environment from these mares are not optimal for embryo growth. In conclusion, being nulliparous and old does not seem to be the perfect match for embryonic development in mares.


2021 ◽  
Vol 22 (23) ◽  
pp. 12918
Author(s):  
Man-Ling Zhang ◽  
Yong Jin ◽  
Li-Hua Zhao ◽  
Jia Zhang ◽  
Meng Zhou ◽  
...  

The inner cell mass of the pre-implantation blastocyst consists of the epiblast and hypoblast from which embryonic stem cells (ESCs) and extra-embryonic endoderm (XEN) stem cells, respectively, can be derived. Importantly, each stem cell type retains the defining properties and lineage restriction of its in vivo tissue origin. We have developed a novel approach for deriving porcine XEN (pXEN) cells via culturing the blastocysts with a chemical cocktail culture system. The pXEN cells were positive for XEN markers, including Gata4, Gata6, Sox17, and Sall4, but not for pluripotent markers Oct4, Sox2, and Nanog. The pXEN cells also retained the ability to undergo visceral endoderm (VE) and parietal endoderm (PE) differentiation in vitro. The maintenance of pXEN required FGF/MEK+TGFβ signaling pathways. The pXEN cells showed a stable phenotype through more than 50 passages in culture and could be established repeatedly from blastocysts or converted from the naïve-like ESCs established in our lab. These cells provide a new tool for exploring the pathways of porcine embryo development and differentiation and providing further reference to the establishment of porcine ESCs with potency of germline chimerism and gamete development.


2021 ◽  
Author(s):  
Stanley E. Strawbridge ◽  
Agata Kurowski ◽  
Elena Corujo-Simon ◽  
Alexander G. Fletcher ◽  
Jennifer Nichols

AbstractA crucial aspect of embryology is relating the position of individual cells to the broader geometry of the embryo. A classic example can be seen in the first cell-fate decision of the mouse embryo, where interior cells become inner cell mass and exterior cells become trophectoderm. Advances in image acquisition and processing technology used by quantitative immunofluorescence have resulted in the production of embryo images with increasingly rich spatial information that demand accessible analytical methods. Here, we describe a simple mathematical framework and an unsupervised machine learning approach for classifying interior and exterior points of a three-dimensional point-cloud. We benchmark our method to demonstrate that it yields higher classification rates for pre-implantation mouse embryos and greater accuracy when challenged with local surface concavities. This method should prove useful to experimentalists within and beyond embryology, with broader applications in the biological and life sciences.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3154
Author(s):  
Lon J. Van Van Winkle

In this review we discuss the beneficial effects of amino acid transport and metabolism on pre- and peri-implantation embryo development, and we consider how disturbances in these processes lead to undesirable health outcomes in adults. Proline, glutamine, glycine, and methionine transport each foster cleavage-stage development, whereas leucine uptake by blastocysts via transport system B0,+ promotes the development of trophoblast motility and the penetration of the uterine epithelium in mammalian species exhibiting invasive implantation. (Amino acid transport systems and transporters, such as B0,+, are often oddly named. The reader is urged to focus on the transporters’ functions, not their names.) B0,+ also accumulates leucine and other amino acids in oocytes of species with noninvasive implantation, thus helping them to produce proteins to support later development. This difference in the timing of the expression of system B0,+ is termed heterochrony—a process employed in evolution. Disturbances in leucine uptake via system B0,+ in blastocysts appear to alter the subsequent development of embryos, fetuses, and placentae, with undesirable consequences for offspring. These consequences may include greater adiposity, cardiovascular dysfunction, hypertension, neural abnormalities, and altered bone growth in adults. Similarly, alterations in amino acid transport and metabolism in pluripotent cells in the blastocyst inner cell mass likely lead to epigenetic DNA and histone modifications that produce unwanted transgenerational health outcomes. Such outcomes might be avoided if we learn more about the mechanisms of these effects.


Sign in / Sign up

Export Citation Format

Share Document