scholarly journals Estimating and predicting snakebite risk in the Terai region of Nepal through a high-resolution geospatial and One Health approach

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carlos Ochoa ◽  
Marta Pittavino ◽  
Sara Babo Martins ◽  
Gabriel Alcoba ◽  
Isabelle Bolon ◽  
...  

AbstractMost efforts to understand snakebite burden in Nepal have been localized to relatively small areas and focused on humans through epidemiological studies. We present the outcomes of a geospatial analysis of the factors influencing snakebite risk in humans and animals, based on both a national-scale multi-cluster random survey and, environmental, climatic, and socio-economic gridded data for the Terai region of Nepal. The resulting Integrated Nested Laplace Approximation models highlight the importance of poverty as a fundamental risk-increasing factor, augmenting the snakebite odds in humans by 63.9 times. For animals, the minimum temperature of the coldest month was the most influential covariate, increasing the snakebite odds 23.4 times. Several risk hotspots were identified along the Terai, helping to visualize at multiple administrative levels the estimated population numbers exposed to different probability risk thresholds in 1 year. These analyses and findings could be replicable in other countries and for other diseases.

Author(s):  
Lisa Domegan ◽  
Patricia Garvey ◽  
Paul McKeown ◽  
Howard Johnson ◽  
Paul Hynds ◽  
...  

Abstract Background Geocoding (the process of converting a text address into spatial data) quality may affect geospatial epidemiological study findings. No national standards for best geocoding practice exist in Ireland. Irish postcodes (Eircodes) are not routinely recorded for infectious disease notifications and > 35% of dwellings have non-unique addresses. This may result in incomplete geocoding and introduce systematic errors into studies. Aims This study aimed to develop a reliable and reproducible methodology to geocode cryptosporidiosis notifications to fine-resolution spatial units (Census 2016 Small Areas), to enhance data validity and completeness, thus improving geospatial epidemiological studies. Methods A protocol was devised to utilise geocoding tools developed by the Health Service Executive’s Health Intelligence Unit. Geocoding employed finite-string automated and manual matching, undertaken sequentially in three additive phases. The protocol was applied to a cryptosporidiosis notification dataset (2008–2017) from Ireland’s Computerised Infectious Disease Reporting System. Outputs were validated against devised criteria. Results Overall, 92.1% (4266/4633) of cases were successfully geocoded to one Small Area, and 95.5% (n = 4425) to larger spatial units. The proportion of records geocoded increased by 14% using the multiphase approach, with 5% of records re-assigned to a different spatial unit. Conclusions The developed multiphase protocol improved the completeness and validity of geocoding, thus increasing the power of subsequent studies. The authors recommend capturing Eircodes ideally using application programming interface for infectious disease or other health-related datasets, for more efficient and reliable geocoding. Where Eircodes are not recorded/available, for best geocoding practice, we recommend this (or a similar) quality driven protocol.


2016 ◽  
Vol 52 (4) ◽  
pp. 950-964 ◽  
Author(s):  
Alan D. Snow ◽  
Scott D. Christensen ◽  
Nathan R. Swain ◽  
E. James Nelson ◽  
Daniel P. Ames ◽  
...  

2021 ◽  
Author(s):  
Luojia Hu ◽  
Wei Yao ◽  
Zhitong Yu ◽  
Yan Huang

<p>A high resolution mangrove map (e.g., 10-m), which can identify mangrove patches with small size (< 1 ha), is a central component to quantify ecosystem functions and help government take effective steps to protect mangroves, because the increasing small mangrove patches, due to artificial destruction and plantation of new mangrove trees, are vulnerable to climate change and sea level rise, and important for estimating mangrove habitat connectivity with adjacent coastal ecosystems as well as reducing the uncertainty of carbon storage estimation. However, latest national scale mangrove forest maps mainly derived from Landsat imagery with 30-m resolution are relatively coarse to accurately characterize the distribution of mangrove forests, especially those of small size (area < 1 ha). Sentinel imagery with 10-m resolution provide the opportunity for identifying these small mangrove patches and generating high-resolution mangrove forest maps. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features for random forest to classify mangroves in China. We found that Sentinel-2 imagery is more effective than Sentinel-1 in mangrove extraction, and a combination of SAR and MSI imagery can get a better accuracy (F1-score of 0.94) than using them separately (F1-score of 0.88 using Sentinel-1 only and 0.895 using Sentinel-2 only). The 10-m mangrove map derived by combining SAR and MSI data identified 20,003 ha mangroves in China and the areas of small mangrove patches (< 1 ha) was 1741 ha, occupying 8.7% of the whole mangrove area. The largest area (819 ha) of small mangrove patches is located in Guangdong Province, and in Fujian the percentage of small mangrove patches in total mangrove area is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest maps are expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of mangrove forest.</p>


2021 ◽  
Author(s):  
Eoghan Keany ◽  
Geoffrey Bessardon ◽  
Emily Gleeson

<p>To represent surface thermal, turbulent and humidity exchanges, Numerical Weather Prediction (NWP) systems require a land-cover classification map to calculate sur-face parameters used in surface flux estimation. The latest land-cover classification map used in the HARMONIE-AROME configuration of the shared ALADIN-HIRLAMNWP system for operational weather forecasting is ECOCLIMAP-SG (ECO-SG). The first evaluation of ECO-SG over Ireland suggested that sparse urban areas are underestimated and instead appear as vegetation areas (1). While the work of (2) on land-cover classification helps to correct the horizontal extent of urban areas, the method does not provide information on the vertical characteristics of urban areas. ECO-SG urban classification implicitly includes building heights (3), and any improvement to ECO-SG urban area extent requires a complementary building height dataset.</p><p>Openly accessible building height data at a national scale does not exist for the island of Ireland. This work seeks to address this gap in availability by extrapolating the preexisting localised building height data across the entire island. The study utilises information from both the temporal and spatial dimensions by creating band-wise temporal aggregation statistics from morphological operations, for both the Sentinel-1A/B and Sentinel-2A/B constellations (4). The extrapolation uses building height information from the Copernicus Urban Atlas, which contains regional coverage for Dublin at 10 m x10 m resolution (5). Various regression models were then trained on these aggregated statistics to make pixel-wise building height estimates. These model estimates were then evaluated with an adjusted RMSE metric, with the most accurate model chosen to map the entire country. This method relies solely on freely available satellite imagery and open-source software, providing a cost-effective mapping service at a national scale that can be updated more frequently, unlike expensive once-off private mapping services. Furthermore, this process could be applied by these services to reduce costs by taking a small representative sample and extrapolating the rest of the area. This method can be applied beyond national borders providing a uniform map that does not depends on the different private service practices facilitating the updates of global or continental land-cover information used in NWP.</p><p> </p><p>(1) G. Bessardon and E. Gleeson, “Using the best available physiography to improve weather forecasts for Ireland,” in Challenges in High-Resolution Short Range NWP at European level including forecaster-developer cooperation, European Meteorological Society, 2019.</p><p>(2) E. Walsh, et al., “Using machine learning to produce a very high-resolution land-cover map for Ireland, ” Advances in Science and Research,  (accepted for publication).</p><p>(3) CNRM, "Wiki - ECOCLIMAP-SG" https://opensource.umr-cnrm.fr/projects/ecoclimap-sg/wiki</p><p>(4) D. Frantz, et al., “National-scale mapping of building height using sentinel-1 and sentinel-2 time series,” Remote Sensing of Environment, vol. 252, 2021.</p><p>(5) M. Fitrzyk, et al., “Esa Copernicus sentinel-1 exploitation activities,” in IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2019.</p>


2021 ◽  
Author(s):  
Vivien-Georgiana Stefan ◽  
Maria-José Escorihuela ◽  
Pere Quintana-Seguí

<h3>Agriculture is an important factor on water resources, given the constant population growth and the strong relationship between water availability and food production. In this context, root zone soil moisture (RZSM) measurements are used by modern irrigators in order to detect the onset of crop water stress and to trigger irrigations. Unfortunately, in situ RZSM measurements are costly; combined with the fact they are available only over small areas and that they might not be representative at the field scale, remote sensing is a cost-effective approach for mapping and monitoring extended areas. A recursive formulation of an exponential filter was used in order to derive 1 km resolution RZSM estimates from SMAP (Soil Moisture Active Passive) surface soil moisture (SSM) over the Ebro basin. The SMAP SSM was disaggregated to a 1 km resolution by using the DISPATCH (DISaggregation based on a Physical And Theoretical scale CHange) algorithm. The pseudodiffusivity parameter of the exponential filter was calibrated per land cover type, by using ISBA-DIF (Interaction Soil Biosphere Atmosphere) surface and root zone soil moisture data as an intermediary step. The daily 1 km RZSM estimates were then used to derive 1 km drought indices such as soil moisture anomalies and soil moisture deficit indices (SMDI), on a weekly time-scale, covering the entire 2020 year. Results show that both drought indices are able to capture rainfall and drying events, with the weekly anomaly being more responsive to sudden events such as heavy rainfalls, while the SMDI is slower to react do the inherent inertia it has. Moreover, a quantitative comparison with drought indices derived from a model-based RZSM estimates has also been performed, with results showing a strong correspondence between the different indices. For comparison purposes, the weekly soil moisture anomalies and SMDI derived using 1 km SMAP-derived SSM were also estimated. The analysis shows that the anomalies and SMDI based on the RZSM are more representative of the hydric stress level of the plants, given that the RZSM is better suited than the SSM to describe the moisture conditions at the deeper layers, which are the ones used by plants during growth and development.</h3><h3>The study provides an insight into obtaining robust, high-resolution remote-sensing derived drought indices based on remote-sensing derived RZSM estimates. The 1 km resolution proves an improvement from other currently available drought indices, such as the European Drought Observatory’s 5 km resolution drought index, which is not able to capture as well the spatial variability present within heterogeneous areas. Moreover, the SSM-derived drought indices are currently used in a drought observatory project, covering a region in the Tarragona province of Catalonia, Spain. The project aims at offering irrigation recommendations to water agencies, and the introduction of RZSM-derived drought indices will further improve such advice.</h3>


2020 ◽  
Vol 12 (19) ◽  
pp. 3120
Author(s):  
Luojia Hu ◽  
Nan Xu ◽  
Jian Liang ◽  
Zhichao Li ◽  
Luzhen Chen ◽  
...  

A high resolution mangrove map (e.g., 10-m), including mangrove patches with small size, is urgently needed for mangrove protection and ecosystem function estimation, because more small mangrove patches have disappeared with influence of human disturbance and sea-level rise. However, recent national-scale mangrove forest maps are mainly derived from 30-m Landsat imagery, and their spatial resolution is relatively coarse to accurately characterize the extent of mangroves, especially those with small size. Now, Sentinel imagery with 10-m resolution provides an opportunity for generating high-resolution mangrove maps containing these small mangrove patches. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and/or Sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features of random forest to classify mangroves in China. We found that Sentinel-2 (F1-Score of 0.895) is more effective than Sentinel-1 (F1-score of 0.88) in mangrove extraction, and a combination of SAR and MSI imagery can get the best accuracy (F1-score of 0.94). The 10-m mangrove map was derived by combining SAR and MSI data, which identified 20003 ha mangroves in China, and the area of small mangrove patches (<1 ha) is 1741 ha, occupying 8.7% of the whole mangrove area. At the province level, Guangdong has the largest area (819 ha) of small mangrove patches, and in Fujian, the percentage of small mangrove patches is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest map is expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of the mangrove forest.


2019 ◽  
Vol 3 ◽  
pp. 163
Author(s):  
Hough I ◽  
Lepeule J ◽  
Zhou B ◽  
Dorman M ◽  
Kloog I

2017 ◽  
Vol 15 (1) ◽  
pp. 58-70 ◽  
Author(s):  
Bofeng Cai ◽  
Jinnan Wang ◽  
Shuying Yang ◽  
Xianqiang Mao ◽  
Libin Cao

2014 ◽  
Vol 48 (12) ◽  
pp. 7085-7093 ◽  
Author(s):  
Jinnan Wang ◽  
Bofeng Cai ◽  
Lixiao Zhang ◽  
Dong Cao ◽  
Lancui Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document