scholarly journals Agr Quorum Sensing influences the Wood-Ljungdahl pathway in Clostridium autoethanogenum

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Pawel Piatek ◽  
Christopher Humphreys ◽  
Mahendra P. Raut ◽  
Phillip C. Wright ◽  
Sean Simpson ◽  
...  

AbstractAcetogenic bacteria are capable of fermenting CO2 and carbon monoxide containing waste-gases into a range of platform chemicals and fuels. Despite major advances in genetic engineering and improving these biocatalysts, several important physiological functions remain elusive. Among these is quorum sensing, a bacterial communication mechanism known to coordinate gene expression in response to cell population density. Two putative agr systems have been identified in the genome of Clostridium autoethanogenum suggesting bacterial communication via autoinducing signal molecules. Signal molecule-encoding agrD1 and agrD2 genes were targeted for in-frame deletion. During heterotrophic growth on fructose as a carbon and energy source, single deletions of either gene did not produce an observable phenotype. However, when both genes were simultaneously inactivated, final product concentrations in the double mutant shifted to a 1.5:1 ratio of ethanol:acetate, compared to a 0.2:1 ratio observed in the wild type control, making ethanol the dominant fermentation product. Moreover, CO2 re-assimilation was also notably reduced in both hetero- and autotrophic growth conditions. These findings were supported through comparative proteomics, which showed lower expression of carbon monoxide dehydrogenase, formate dehydrogenase A and hydrogenases in the ∆agrD1∆agrD2 double mutant, but higher levels of putative alcohol and aldehyde dehydrogenases and bacterial micro-compartment proteins. These findings suggest that Agr quorum sensing, and by inference, cell density play a role in carbon resource management and use of the Wood-Ljungdahl pathway as an electron sink.

Microbiology ◽  
2003 ◽  
Vol 149 (8) ◽  
pp. 1981-1989 ◽  
Author(s):  
Stéphane Uroz ◽  
Cathy D'Angelo-Picard ◽  
Aurélien Carlier ◽  
Miena Elasri ◽  
Carine Sicot ◽  
...  

Bacteria degrading the quorum-sensing (QS) signal molecule N-hexanoylhomoserine lactone were isolated from a tobacco rhizosphere. Twenty-five isolates degrading this homoserine lactone fell into six groups according to their genomic REP-PCR and rrs PCR-RFLP profiles. Representative strains from each group were identified as members of the genera Pseudomonas, Comamonas, Variovorax and Rhodococcus. All these isolates degraded N-acylhomoserine lactones other than the hexanoic acid derivative, albeit with different specificity and kinetics. One of these isolates, Rhodococcus erythropolis strain W2, was used to quench QS-regulated functions of other microbes. In vitro, W2 strongly interfered with violacein production by Chromobacterium violaceum, and transfer of pathogenicity in Agrobacterium tumefaciens. In planta, R. erythropolis W2 markedly reduced the pathogenicity of Pectobacterium carotovorum subsp. carotovorum in potato tubers. These series of results reveal the diversity of the QS-interfering bacteria in the rhizosphere and demonstrate the validity of targeting QS signal molecules to control pathogens with natural bacterial isolates.


2006 ◽  
Vol 52 (5) ◽  
pp. 411-418 ◽  
Author(s):  
Shigenobu Yoshida ◽  
Linda L Kinkel ◽  
Hirosuke Shinohara ◽  
Nobutaka Numajiri ◽  
Syuntaro Hiradate ◽  
...  

The production of quorum-sensing-related signal molecules (QSRMs) among culturable bacteria comprising the community on wheat heads was investigated. The taxonomic position of 186 bacterial isolates obtained from ten heads was inferred based on 16S rRNA gene sequences, and their QSRM production was determined using two bioreporter strains of N-acylhomoserine lactones. Approximately 33% of isolates produced QSRMs, though the proportion of QSRM-producing isolates on a wheat head was significantly negatively correlated with population size. Most of the producing isolates were Pantoea species, most commonly Pantoea ananatis. Furthermore, the proportion of Pantoea ananatis that produced QSRMs was significantly negatively correlated with the number of bacterial genera (community richness) on each head. Finally, community richness was positively correlated with population size. Qualitative analysis using thin-layer-chromatography revealed that the QSRMs of Pantoea isolates were composed of at least two compounds. This is the first report indicating that Pantoea ananatis isolates inhabiting wheat heads are capable of producing QSRMs. QSRM production by Pantoea spp. may contribute to the predominance of this genus on wheat heads, particularly at relatively low population densities and community diversity.Key words: quorum sensing, signal molecule, epiphyte, wheat head, Pantoea spp.


2005 ◽  
Vol 187 (24) ◽  
pp. 8427-8436 ◽  
Author(s):  
Neela D. Keshavan ◽  
Puneet K. Chowdhary ◽  
Donovan C. Haines ◽  
Juan E. González

ABSTRACT Sinorhizobium meliloti is a gram-negative soil bacterium, capable of establishing a nitrogen-fixing symbiosis with its legume host, alfalfa (Medicago sativa). Quorum sensing plays a crucial role in this symbiosis, where it influences the nodulation process and the synthesis of the symbiotically important exopolysaccharide II (EPS II). S. meliloti has three quorum-sensing systems (Sin, Tra, and Mel) that use N-acyl homoserine lactones as their quorum-sensing signal molecule. Increasing evidence indicates that certain eukaryotic hosts involved in symbiotic or pathogenic relationships with gram-negative bacteria produce quorum-sensing-interfering (QSI) compounds that can cross-communicate with the bacterial quorum-sensing system. Our studies of alfalfa seed exudates suggested the presence of multiple signal molecules capable of interfering with quorum-sensing-regulated gene expression in different bacterial strains. In this work, we choose one of these QSI molecules (SWI) for further characterization. SWI inhibited violacein production, a phenotype that is regulated by quorum sensing in Chromobacterium violaceum. In addition, this signal molecule also inhibits the expression of the S. meliloti exp genes, responsible for the production of EPS II, a quorum-sensing-regulated phenotype. We identified this molecule as l-canavanine, an arginine analog, produced in large quantities by alfalfa and other legumes.


2000 ◽  
Vol 355 (1397) ◽  
pp. 667-680 ◽  
Author(s):  
Paul Williams ◽  
Miguel Camara ◽  
Andrea Hardman ◽  
Simon Swift ◽  
Deborah Milton ◽  
...  

One crucial feature of almost all bacterial infections is the need for the invading pathogen to reach a critical cell population density sufficient to overcome host defences and establish the infection. Controlling the expression of virulence determinants in concert with cell population density may therefore confer a significant survival advantage on the pathogen such that the host is overwhelmed before a defence response can be fully initiated. Many different bacterial pathogens are now known to regulate diverse physiological processes including virulence in a cell–density–dependent manner through cell–cell communication. This phenomenon, which relies on the interaction of a diffusible signal molecule (e.g. an N –acylhomoserine lactone) with a sensor or transcriptional activator to couple gene expression with cell population density, has become known as ‘quorum sensing’ . Although the size of the ‘quorum’ is likely to be highly variable and influenced by the diffusibility of the signal molecule within infected tissues, nevertheless quorum–sensing signal molecules can be detected in vivo in both experimental animal model and human infections. Furthermore, certain quorum–sensing molecules have been shown to possess pharmacological and immunomodulatory activity such that they may function as virulence determinants per se . As a consequence, quorum sensing constitutes a novel therapeutic target for the design of small molecular antagonists capable of attenuating virulence through the blockade of bacterial cell–cell communication.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Leanid Laganenka ◽  
Remy Colin ◽  
Victor Sourjik

Abstract Bacteria communicate by producing and sensing extracellular signal molecules called autoinducers. Such intercellular signalling, known as quorum sensing, allows bacteria to coordinate and synchronize behavioural responses at high cell densities. Autoinducer 2 (AI-2) is the only known quorum-sensing molecule produced by Escherichia coli but its physiological role remains elusive, although it is known to regulate biofilm formation and virulence in other bacterial species. Here we show that chemotaxis towards self-produced AI-2 can mediate collective behaviour—autoaggregation—of E. coli. Autoaggregation requires motility and is strongly enhanced by chemotaxis to AI-2 at physiological cell densities. These effects are observed regardless whether cell–cell interactions under particular growth conditions are mediated by the major E. coli adhesin (antigen 43) or by curli fibres. Furthermore, AI-2-dependent autoaggregation enhances bacterial stress resistance and promotes biofilm formation.


2003 ◽  
Vol 69 (7) ◽  
pp. 3901-3910 ◽  
Author(s):  
Kathrin Riedel ◽  
Daniela Talker-Huiber ◽  
Michael Givskov ◽  
Helmut Schwab ◽  
Leo Eberl

ABSTRACT Serratia liquefaciens MG1 employs the swr quorum-sensing system to control various functions, including production of extracellular enzymes and swarming motility. Here we report the sequencing of the swr flanking DNA regions. We identified a gene upstream of swrR and transcribed in the same direction, designated estA, which encodes an esterase that belongs to family II of lipolytic enzymes. EstA was heterologously expressed in Escherichia coli, and the substrate specificity of the enzyme was determined in crude extracts. With the aid of zymograms visualizing EstA on polyacrylamide gels and by the analysis of a transcriptional fusion of the estA promoter to the promoterless luxAB genes, we showed that expression of the esterase is not regulated by the swr quorum-sensing system. An estA mutant was generated and was found to exhibit growth defects on minimal medium containing Tween 20 or Tween 80 as the sole carbon source. Moreover, we show that the mutant produces greatly reduced amounts of N-acyl-homoserine lactone (AHL) signal molecules on Tween-containing medium compared with the wild type, suggesting that under certain growth conditions EstA may be important for providing the cell with precursors required for AHL biosynthesis.


2004 ◽  
Vol 72 (11) ◽  
pp. 6463-6470 ◽  
Author(s):  
Doreen S. W. Hooi ◽  
Barrie W. Bycroft ◽  
Siri Ram Chhabra ◽  
Paul Williams ◽  
David I. Pritchard

ABSTRACT Pseudomonas aeruginosa releases a spectrum of well-regulated virulence factors, controlled by intercellular communication (quorum sensing) and mediated through the production of small diffusible quorum-sensing signal molecules (QSSM). We hypothesize that QSSM may in fact serve a dual purpose, also allowing bacterial colonization via their intrinsic immune-modulatory capacity. One class of signal molecule, the N-acylhomoserine lactones, has pleiotropic effects on eukaryotic cells, particularly those involved in host immunity. In the present study, we have determined the comparative effects of two chemically distinct and endobronchially detectable QSSM, N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and 2-heptyl-3-hydroxy-4 (1H)-quinolone or the Pseudomonas quinolone signal (PQS), on human leukocytes exposed to a series of stimuli designed to detect differential immunological activity in vitro. 3-Oxo-C12-HSL and PQS displayed differential effects on the release of interleukin-2 (IL-2) when human T cells were activated via the T-cell receptor and CD28 (a costimulatory molecule). 3-Oxo-C12-HSL inhibited cell proliferation and IL-2 release; PQS inhibited cell proliferation without affecting IL-2 release. Both molecules inhibited cell proliferation and the release of IL-2 following mitogen stimulation. Furthermore, in the presence of Escherichia coli lipopolysaccharide, 3-oxo-C12-HSL inhibited tumor necrosis factor alpha release from human monocytes, as reported previously (K. Tateda et al., Infect. Immun. 64:37-43, 1996), whereas PQS did not inhibit in this assay. These data highlight the presence of two differentially active immune modulatory QSSM from P. aeruginosa, which are detectable endobronchially and may be active at the host/pathogen interface during infection with P. aeruginosa, should the bronchial airway lymphoid tissues prove to be accessible to QSSM.


Microbiology ◽  
2005 ◽  
Vol 151 (11) ◽  
pp. 3589-3602 ◽  
Author(s):  
B. Koch ◽  
T. Liljefors ◽  
T. Persson ◽  
J. Nielsen ◽  
S. Kjelleberg ◽  
...  

The function of LuxR homologues as quorum sensors is mediated by the binding of N-acyl-l-homoserine lactone (AHL) signal molecules to the N-terminal receptor site of the proteins. In this study, site-directed mutagenesis was carried out of the amino acid residues comprising the receptor site of LuxR from Vibrio fischeri, and the ability of the L42A, L42S, Y62F, W66F, D79N, W94D, V109D, V109T and M135A LuxR mutant proteins to activate green fluorescent protein expression from a PluxI promoter was measured. X-ray crystallographic studies of the LuxR homologue TraR indicated that residues Y53 and W57 form hydrogen bonds to the 1-carbonyl group and the ring carbonyl group, respectively, of the cognate AHL signal. Based on the activity and signal specificity of the LuxR mutant proteins, and on molecular modelling, a model is suggested in which Y62 (corresponding to Y53 in TraR) forms a hydrogen bond with the ring carbonyl group rather than the 1-carbonyl group, while W66 (corresponding to W57 in TraR) forms a hydrogen bond to the 1-carbonyl group. This flips the position of the acyl side chain in the LuxR/signal molecule complex compared to the TraR/signal molecule complex. Halogenated furanones from the marine alga Delisea pulchra and the synthetic signal analogue N-(sulfanylacetyl)-l-homoserine lactone can block quorum sensing. The LuxR mutant proteins were insensitive to inhibition by N-(propylsulfanylacetyl)-l-homoserine lactone. In contrast, the mutations had only a minor effect on the sensitivity of the proteins to halogenated furanones, and the data strongly suggest that these compounds do not compete in a ‘classic’ way with N-3-oxohexanoyl-l-homoserine lactone for the binding site. Based on modelling and experimental data it is suggested that these compounds bind in a non-agonist fashion.


2006 ◽  
Vol 74 (3) ◽  
pp. 1673-1682 ◽  
Author(s):  
Charles F. Sio ◽  
Linda G. Otten ◽  
Robbert H. Cool ◽  
Stephen P. Diggle ◽  
Peter G. Braun ◽  
...  

ABSTRACT The virulence of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 is controlled by an N-acyl-homoserine lactone (AHL)-dependent quorum-sensing system. During functional analysis of putative acylase genes in the P. aeruginosa PAO1 genome, the PA2385 gene was found to encode an acylase that removes the fatty acid side chain from the homoserine lactone (HSL) nucleus of AHL-dependent quorum-sensing signal molecules. Analysis showed that the posttranslational processing of the acylase and the hydrolysis reaction type are similar to those of the beta-lactam acylases, strongly suggesting that the PA2385 protein is a member of the N-terminal nucleophile hydrolase superfamily. In a bioassay, the purified acylase was shown to degrade AHLs with side chains ranging in length from 11 to 14 carbons at physiologically relevant low concentrations. The substituent at the 3′ position of the side chain did not affect activity, indicating broad-range AHL quorum-quenching activity. Of the two main AHL signal molecules of P. aeruginosa PAO1, N-butanoyl-l-homoserine lactone (C4-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL), only 3-oxo-C12-HSL is degraded by the enzyme. Addition of the purified protein to P. aeruginosa PAO1 cultures completely inhibited accumulation of 3-oxo-C12-HSL and production of the signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone and reduced production of the virulence factors elastase and pyocyanin. Similar results were obtained when the PA2385 gene was overexpressed in P. aeruginosa. These results demonstrate that the protein has in situ quorum-quenching activity. The quorum-quenching AHL acylase may enable P. aeruginosa PAO1 to modulate its own quorum-sensing-dependent pathogenic potential and, moreover, offers possibilities for novel antipseudomonal therapies.


2012 ◽  
Vol 57 (1) ◽  
pp. 569-578 ◽  
Author(s):  
Moayad Alhariri ◽  
Abdelwahab Omri

ABSTRACTWe sought to investigate alterations in quorum-sensing signal moleculeN-acyl homoserine lactone secretion and in the release ofPseudomonas aeruginosavirulence factors, as well as thein vivoantimicrobial activity of bismuth-ethanedithiol incorporated into a liposome-loaded tobramycin formulation (LipoBiEDT-TOB) administered to rats chronically infected withP. aeruginosa. The quorum-sensing signal moleculeN-acyl homoserine lactone was monitored by using a biosensor organism.P. aeruginosavirulence factors were assessed spectrophotometrically. An agar beads model of chronicPseudomonaslung infection in rats was used to evaluate the efficacy of the liposomal formulation in the reduction of bacterial count. The levels of active tobramycin in the lungs and the kidneys were evaluated by microbiological assay. LipoBiEDT-TOB was effective in disrupting both quorum-sensing signal moleculesN-3-oxo-dodeccanoylhomoserine lactone andN-butanoylhomoserine lactone, as well as significantly (P< 0.05) reducing lipase, chitinase, and protease production. At 24 h after 3 treatments, the CFU counts in lungs of animals treated with LipoBiEDT-TOB were of 3 log10CFU/lung, comparated to 7.4 and 4.7 log10CFU/lung, respectively, in untreated lungs and in lungs treated with free antibiotic. The antibiotic concentration after the last dose of LipoBiEDT-TOB was 25.1 μg/lung, while no tobramycin was detected in the kidneys. As for the free antibiotic, we found 6.5 μg/kidney but could not detect any tobramycin in the lungs. Taken together, LipoBiEDT-TOB reduced the production of quorum-sensing molecules and virulence factors and could highly improve the management of chronic pulmonary infection in cystic fibrosis patients.


Sign in / Sign up

Export Citation Format

Share Document