bacterial communication
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 47)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
pp. 75-126
Author(s):  
James T. Cullen ◽  
◽  
Peadar G. Lawlor ◽  
Gillian E. Gardiner ◽  
◽  
...  

The gut microbiome plays a fundamental role in regulating pig health and growth. Understanding the functions performed by the microbiome is vital when considering it as a target to improve pig health and growth, a pursuit driven by the increasing regulation of traditional means of disease control and growth promotion. This chapter explores the structure, diversity and functions of the pig gut microbiome, focusing on the role of the resident bacterial communities. It examines their relationships, interactions, and contributions to the host, ranging from the production of antimicrobial substances and prevention of pathogen colonisation to improvement of nutrient digestibility and the production of volatile fatty acids (VFAs) and vitamins. The chapter also reviews bacterial communication and the antibiotic resistome of the pig gut, outlining how they may be targeted/manipulated to reduce antibiotic resistance and promote improved gut health.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Pawel Piatek ◽  
Christopher Humphreys ◽  
Mahendra P. Raut ◽  
Phillip C. Wright ◽  
Sean Simpson ◽  
...  

AbstractAcetogenic bacteria are capable of fermenting CO2 and carbon monoxide containing waste-gases into a range of platform chemicals and fuels. Despite major advances in genetic engineering and improving these biocatalysts, several important physiological functions remain elusive. Among these is quorum sensing, a bacterial communication mechanism known to coordinate gene expression in response to cell population density. Two putative agr systems have been identified in the genome of Clostridium autoethanogenum suggesting bacterial communication via autoinducing signal molecules. Signal molecule-encoding agrD1 and agrD2 genes were targeted for in-frame deletion. During heterotrophic growth on fructose as a carbon and energy source, single deletions of either gene did not produce an observable phenotype. However, when both genes were simultaneously inactivated, final product concentrations in the double mutant shifted to a 1.5:1 ratio of ethanol:acetate, compared to a 0.2:1 ratio observed in the wild type control, making ethanol the dominant fermentation product. Moreover, CO2 re-assimilation was also notably reduced in both hetero- and autotrophic growth conditions. These findings were supported through comparative proteomics, which showed lower expression of carbon monoxide dehydrogenase, formate dehydrogenase A and hydrogenases in the ∆agrD1∆agrD2 double mutant, but higher levels of putative alcohol and aldehyde dehydrogenases and bacterial micro-compartment proteins. These findings suggest that Agr quorum sensing, and by inference, cell density play a role in carbon resource management and use of the Wood-Ljungdahl pathway as an electron sink.


2021 ◽  
Author(s):  
Abhishek Shrestha ◽  
Casandra Hernandez-Reyes ◽  
Maja Grimm ◽  
Johannes Krumwiede ◽  
Elke Stein ◽  
...  

Quorum sensing (QS) molecules mediate communication between bacterial cells. N-acyl homoserine lactones (AHL) are one of the best-studied groups of QS molecules. In addition to bacterial communication, AHL are involved in interactions with eukaryotes. Short side-chain AHL are readily taken up by plants. They induce root elongation and growth promotion. Hydrophobic long side-chain AHL are usually not transported over long distances although, they may prime plants for enhanced resistance. Unfortunately, studies elucidating the plant factors required for response to AHL are sparse. Here, we provide evidence of a plant protein, namely the AHL-priming protein 1 (ALI1), indispensable for enhanced resistance response induced by the N-3-oxotetradecanoyl-homoserine lactone (oxo-C14-HSL). Comparing Col-0 and the ali1 mutant, we revealed loss of AHL-priming in ali1. This phenomenon is reverted with the reintroduction of ALI1 into ali1. Additional transcriptome analysis revealed that ali1 is less sensitive to oxo-C14-HSL treatment compared to the wild-type. Our results suggest, therefore, that ALI1 is required for oxo-C14-HSL-dependent priming for enhanced resistance in Arabidopsis.


2021 ◽  
Vol 14 (12) ◽  
pp. 1262
Author(s):  
Marine Duplantier ◽  
Elodie Lohou ◽  
Pascal Sonnet

The emergence and the dissemination of multidrug-resistant bacteria constitute a major public health issue. Among incriminated Gram-negative bacteria, Pseudomonas aeruginosa has been designated by the WHO as a critical priority threat. During the infection process, this pathogen secretes various virulence factors in order to adhere and colonize host tissues. Furthermore, P. aeruginosa has the capacity to establish biofilms that reinforce its virulence and intrinsic drug resistance. The regulation of biofilm and virulence factor production of this micro-organism is controlled by a specific bacterial communication system named Quorum Sensing (QS). The development of anti-virulence agents targeting QS that could attenuate P. aeruginosa pathogenicity without affecting its growth seems to be a promising new therapeutic strategy. This could prevent the selective pressure put on bacteria by the conventional antibiotics that cause their death and promote resistant strain survival. This review describes the QS-controlled pathogenicity of P. aeruginosa and its different specific QS molecular pathways, as well as the recent advances in the development of innovative QS-quenching anti-virulence agents to fight anti-bioresistance.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Weijia He ◽  
Huamei Yang ◽  
Xiang Wang ◽  
Hongmei Li ◽  
Qingli Dong

Abstract Quorum sensing (QS) can exist in food-related bacteria and potentially affect bacterial growth through acyl-homoserine lactones (AHLs). To verify the role of QS compounds in the cell-free supernatant, this study examined the effect of supernatant extracted from Pseudomonas aeruginosa culture on the growth kinetics of Salmonella Enteritidis. The results showed that the lag time (λ) of S. Enteritidis was apparently reduced (p < 0.05) under the influence of P. aeruginosa culture supernatant compared with the S. Enteritidis culture supernatant. HPLC-MS/MS test demonstrated that AHLs secreted by P. aeruginosa were mainly C14-HSL with a content of 85.71 μg/mL and a small amount of 3-oxo-C12-HSL. In addition, the commercially synthetic C14-HSL had positive effects on the growth of S. Enteritidis, confirming once again that the growth of S. Enteritidis was affected by AHL metabolized by other bacteria and the complexity of bacterial communication.


LWT ◽  
2021 ◽  
pp. 112703
Author(s):  
Rajashri Banerji ◽  
Astha Karkee ◽  
Poonam Kanojiya ◽  
Amrita Patil ◽  
Sunil D. Saroj

2021 ◽  
Vol 11 (19) ◽  
pp. 9116
Author(s):  
Kibaek Lee ◽  
Chung-Hak Lee ◽  
Kwang-Ho Choo

As a universal quorum sensing (QS) signal, autoinducer-2 (AI-2) is utilized by both Gram-negative and Gram-positive bacteria to coordinate several group behaviors, such as biofilm formation, virulence, and motility, when the bacterial cell density exceeds the thresholds. The determination of the AI-2 level is essential to understand the physiological and biochemical processes involved in bacterial communication. However, the current methods for AI-2 determination are complicated, time-consuming, and require costly equipment, such as a mass spectrometer (MS) or fluorescence detector (FLD). In this study, we present a new and easily applicable method for AI-2 determination. This method, based on the primary derivatization of AI-2 with 2,3-diaminonaphthalene (DAN), uses an affordable high-performance liquid chromatography (HPLC) instrument with a UV detector. Under optimized conditions, our method showed a good linearity (r2 = 0.999) and demonstrated the effective detection of AI-2 levels in various environmental samples, as follows: 0.38 (±0.05) μM for E. coli K12, 0.48 (±0.05) μM for Aeromonas sp. YB-2, 0.32 (±0.06) μM for the Enterobacter sp. YB-3, and 0.28 (±0.16) μM for activated sludge.


2021 ◽  
Vol 9 (8) ◽  
pp. 1777
Author(s):  
Jordan Pinto ◽  
Raphaël Lami ◽  
Marc Krasovec ◽  
Régis Grimaud ◽  
Laurent Urios ◽  
...  

Although interactions between microalgae and bacteria are observed in both natural environment and the laboratory, the modalities of coexistence of bacteria inside microalgae phycospheres in laboratory cultures are mostly unknown. Here, we focused on well-controlled cultures of the model green picoalga Ostreococcus tauri and the most abundant member of its phycosphere, Marinobacter algicola. The prevalence of M. algicola in O. tauri cultures raises questions about how this bacterium maintains itself under laboratory conditions in the microalga culture. The results showed that M. algicola did not promote O. tauri growth in the absence of vitamin B12 while M. algicola depended on O. tauri to grow in synthetic medium, most likely to obtain organic carbon sources provided by the microalgae. M. algicola grew on a range of lipids, including triacylglycerols that are known to be produced by O. tauri in culture during abiotic stress. Genomic screening revealed the absence of genes of two particular modes of quorum-sensing in Marinobacter genomes which refutes the idea that these bacterial communication systems operate in this genus. To date, the ‘opportunistic’ behaviour of M. algicola in the laboratory is limited to several phytoplanktonic species including Chlorophyta such as O. tauri. This would indicate a preferential occurrence of M. algicola in association with these specific microalgae under optimum laboratory conditions.


2021 ◽  
Vol 36 (4) ◽  
Author(s):  
Marc Artiga

Sign in / Sign up

Export Citation Format

Share Document