scholarly journals Linkage mapping and QTL analysis of growth traits in Rhopilema esculentum

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Bailing Chen ◽  
Yulong Li ◽  
Meilin Tian ◽  
Hao Su ◽  
Wei Sun ◽  
...  

AbstractR. esculentum is a popular seafood in Asian countries and an economic marine fishery resource in China. However, the genetic linkage map and growth-related molecular markers are still lacking, hindering marker assisted selection (MAS) for genetic improvement of R. esculentum. Therefore, we firstly used 2b-restriction site-associated DNA (2b-RAD) method to sequence 152 R. esculentum specimens and obtained 9100 single nucleotide polymorphism (SNP) markers. A 1456.34 cM linkage map was constructed using 2508 SNP markers with an average interval of 0.58 cM. Then, six quantitative trait loci (QTLs) for umbrella diameter and body weight were detected by QTL analysis based on the new linkage map. The six QTLs are located on four linkage groups (LGs), LG4, LG13, LG14 and LG15, explaining 9.4% to 13.4% of the phenotypic variation. Finally, 27 candidate genes in QTLs regions of LG 14 and 15 were found associated with growth and one gene named RE13670 (sushi, von Willebrand factor type A, EGF and pentraxin domain-containing protein 1-like) may play an important role in controlling the growth of R. esculentum. This study provides valuable information for investigating the growth mechanism and MAS breeding in R. esculentum.

Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 181
Author(s):  
Kun Qiao ◽  
Caiyun Jiang ◽  
Min Xu ◽  
Bei Chen ◽  
Wenhui Qiu ◽  
...  

The von Willebrand factor type D (VWD) domain in vitellogenin has recently been found to bind tetrodotoxin. The way in which this protein domain associates with tetrodotoxin and participates in transporting tetrodotoxin in vivo remains unclear. A cDNA fragment of the vitellogenin gene containing the VWD domain from pufferfish (Takifugu flavidus) (TfVWD) was cloned. Using in silico structural and docking analyses of the predicted protein, we determined that key amino acids (namely, Val115, ASP116, Val117, and Lys122) in TfVWD mediate its binding to tetrodotoxin, which was supported by in vitro surface plasmon resonance analysis. Moreover, incubating recombinant rTfVWD together with tetrodotoxin attenuated its toxicity in vivo, further supporting protein–toxin binding and indicating associated toxicity-neutralizing effects. Finally, the expression profiling of TfVWD across different tissues and developmental stages indicated that its distribution patterns mirrored those of tetrodotoxin, suggesting that TfVWD may be involved in tetrodotoxin transport in pufferfish. For the first time, this study reveals the amino acids that mediate the binding of TfVWD to tetrodotoxin and provides a basis for further exploration of the molecular mechanisms underlying the enrichment and transfer of tetrodotoxin in pufferfish.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4277-4283 ◽  
Author(s):  
Angela M. Keightley ◽  
Y. Miu Lam ◽  
Jolene N. Brady ◽  
Cherie L. Cameron ◽  
David Lillicrap

Abstract Both genetic and environmental factors contribute to the normal population variability of plasma von Willebrand Factor (vWF) levels, however, regulatory mechanisms at the vWF gene locus itself have not yet been identified. We have investigated the association between polymorphic variation in the 5′-regulatory region of the vWF gene and levels of plasma vWF:Ag in a study of 261 group O blood donors. Three novel single nucleotide polymorphisms (SNPs) were identified in the vWF promoter: C/T at -1234, A/G at -1185, and G/A at -1051. These SNPs had identical allele frequencies of 0.36 for the -1234C, -1185A, and -1051G alleles and 0.64 for the -1234T, -1185G, and -1051A alleles and were in strong linkage disequilibrium. In fact, these polymorphisms segregated as two distinct haplotypes: -1234C/-1185A/-1051G (haplotype 1) and -1234T/-1185G/-1051A (haplotype 2) with 12.6% of subjects homozygous for haplotype 1, 40.6% homozygous for haplotype 2, and 42.5% of subjects heterozygous for both haplotypes. Only 4.3% of individuals had other genotypes. A significant association between promoter genotype and level of plasma vWF:Ag was established (analysis of covariance [ANCOVA], P = .008; Kruskal-Wallis test,P = .006); individuals with the CC/AA/GG genotype had the highest mean vWF:Ag levels (0.962 U/mL), intermediate values of vWF:Ag (0.867 U/mL) were observed for heterozygotes (CT/AG/GA), and those with the TT/GG/AA genotype had the lowest mean plasma vWF:Ag levels (0.776 U/mL). Interestingly, when the sample was subgrouped according to age, the significant association between promoter genotype and plasma vWF:Ag level was accentuated in subjects > 40 years of age (analysis of variance [ANOVA], P = .003; Kruskal-Wallis test, P= .001), but was not maintained for subjects ≤ 40 years of age (ANOVA, P > .4; Kruskal-Wallis test, P > .4). In the former subgroup, mean levels of plasma vWF:Ag for subjects with the CC/AA/GG, CT/AG/GA, and TT/GG/AA genotypes were 1.075, 0.954, and 0.794 U/mL, respectively. By searching a transcription factor binding site profile database, these polymorphic sequences were predicted to interact with several transcription factors expressed in endothelial cells, including Sp1, GATA-2, c-Ets, and NFκB. Furthermore, the binding sites at the -1234 and -1051 SNPs appeared to indicate allelic preferences for some of these proteins. Electrophoretic mobility shift assays (EMSAs) performed with recombinant human NFκB p50 showed preferential binding of the -1234T allele (confirmed by supershift EMSAs), and EMSAs using bovine aortic endothelial cell (BAEC) nuclear extracts produced specific binding of a nuclear protein to the -1051A allele, but not the -1051G allele. These findings suggest that circulating levels of vWF:Ag may be determined, at least in part, by polymorphic variation in the promoter region of the vWF gene, and that this association may be mediated by differential binding of nuclear proteins involved in the regulation of vWF gene expression.


2015 ◽  
Vol 43 (5) ◽  
pp. 795-800 ◽  
Author(s):  
Helen Troilo ◽  
Anne L. Barrett ◽  
Alexander P. Wohl ◽  
Thomas A. Jowitt ◽  
Richard F. Collins ◽  
...  

Chordin-mediated regulation of bone morphogenetic protein (BMP) family growth factors is essential in early embryogenesis and adult homoeostasis. Chordin binds to BMPs through cysteine-rich von Willebrand factor type C (vWC) homology domains and blocks them from interacting with their cell surface receptors. These domains also self-associate and enable chordin to target related proteins to fine-tune BMP regulation. The chordin–BMP inhibitory complex is strengthened by the secreted glycoprotein twisted gastrulation (Tsg); however, inhibition is relieved by cleavage of chordin at two specific sites by tolloid family metalloproteases. As Tsg enhances this cleavage process, it serves a dual role as both promoter and inhibitor of BMP signalling. Recent developments in chordin research suggest that rather than simply being by-products, the cleavage fragments of chordin continue to play a role in BMP regulation. In particular, chordin cleavage at the C-terminus potentiates its anti-BMP activity in a type-specific manner.


2015 ◽  
Vol 13 (5) ◽  
pp. 815-820 ◽  
Author(s):  
N. Wohner ◽  
P. Legendre ◽  
C. Casari ◽  
O. D. Christophe ◽  
P. J. Lenting ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document