von willebrand factor
Recently Published Documents


TOTAL DOCUMENTS

5893
(FIVE YEARS 692)

H-INDEX

135
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Roxana Iacob ◽  
Klaus Bonazza ◽  
Nathan Hudson ◽  
Jing Li ◽  
Chafen Lu ◽  
...  

Hemostasis in the arterial circulation is mediated by binding of the A1 domain of the ultralong protein von Willebrand factor to GPIbα on platelets to form a platelet plug. A1 is activated by tensile force on VWF concatemers imparted by hydrodynamic drag force. The A1 core is protected from force-induced unfolding by a long-range disulfide that links cysteines near its N and C-termini. The O-glycosylated linkers between A1 and its neighboring domains, which transmit tensile force to A1, are reported to regulate A1 activation for binding to GPIb, but the mechanism is controversial and incompletely defined. Here, we study how these linkers, and their polypeptide and O-glycan moieties, regulate A1 affinity by measuring affinity, kinetics, thermodynamics, hydrogen deuterium exchange (HDX), and unfolding by temperature and urea. The N-linker lowers A1 affinity 40-fold with a stronger contribution from its O-glycan than polypeptide moiety. The N-linker also decreases HDX in specific regions of A1 and increases thermal stability and the energy gap between its native state and an intermediate state, which is observed in urea-induced unfolding. The C-linker also decreases affinity of A1 for GPIbα, but in contrast to the N-linker, has no significant effect on HDX or A1 stability. Among different models for A1 activation, our data are consistent with the model that the intermediate state has high affinity for GPIbα, which is induced by tensile force physiologically and regulated allosterically by the N-linker.


2022 ◽  
Vol 226 (1) ◽  
pp. S346-S347
Author(s):  
Sharon Davidesko ◽  
Oleg Pikovsky ◽  
Kayed Al-Athamen ◽  
Rinat Hackmon ◽  
Offer Erez ◽  
...  

Author(s):  
Neil S. Harris ◽  
J. Peter Pelletier ◽  
Maximo J. Marin ◽  
William E. Winter

Author(s):  
Kokoro Iwata ◽  
Keita Kawarabayashi ◽  
Keigo Yoshizaki ◽  
Tian Tian ◽  
Kan Saito ◽  
...  

ASAIO Journal ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Ko Sakatsume ◽  
Masatoshi Akiyama ◽  
Daisuke Sakota ◽  
Wataru Hijikata ◽  
Hisanori Horiuchi ◽  
...  

2021 ◽  
Author(s):  
Marije Kat ◽  
Ellie Karampini ◽  
Arie Johan Hoogendijk ◽  
Petra Bürgisser ◽  
Aat A. Mulder ◽  
...  

AbstractVon Willebrand factor (VWF) is a multimeric hemostatic protein primarily synthesized in endothelial cells (ECs). VWF is stored in endothelial storage organelles, the Weibel-Palade bodies (WPBs), whose biogenesis strongly depends on VWF anterograde trafficking and Golgi architecture. Elongated WPB morphology is correlated to longer VWF strings with better adhesive properties. We previously identified the SNARE SEC22B, which is involved in anterograde ER-to-Golgi transport, as a novel regulator of WPB elongation. To elucidate novel determinants of WPB morphology we explored endothelial SEC22B interaction partners in a mass spectrometrybased approach, identifying the Golgi SNARE Syntaxin 5 (STX5). We established STX5 knockdown in ECs using shRNA-dependent silencing and analyzed WPB and Golgi morphology, using confocal and electron microscopy. STX5-depleted ECs exhibited extensive Golgi fragmentation and decreased WPB length, which was associated with reduced intracellular VWF levels, and impaired stimulated VWF secretion. However, the secretion-incompetent organelles in shSTX5 cells maintained WPB markers such as Angiopoietin 2, P-selectin, Rab27A, and CD63. Taken together, our study has identified SNARE protein STX5 as a novel regulator of WPB biogenesis.


Sign in / Sign up

Export Citation Format

Share Document