scholarly journals Rainfall increasing offsets the negative effects of nighttime warming on GHGs and wheat yield in North China Plain

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yaojun Zhang ◽  
Wenkai Shou ◽  
Carmelo Maucieri ◽  
Feng Lin

AbstractThe effects of nighttime warming and rainfall increasing on crop productivity and soil greenhouse gas emissions are few studied. This study was conducted with a field experiment to investigate the effects of nighttime warming, rainfall increasing and their interaction on wheat grain yield, methane (CH4) and nitrous oxide (N2O) emissions during a winter wheat growing season in the North China Plain (NCP). The results showed that nighttime warming and rainfall increasing significantly altered soil temperature and moisture, and thus the CH4 and N2O emissions from the soil. Nighttime warming significantly promoted soil CH4 uptake by 21.2% and increased soil N2O emissions by 22.4%. Rainfall increasing stimulated soil N2O emissions by 15.7% but decreased soil CH4 uptake by 18.6%. Nighttime warming significantly decreased wheat yield by 5.5%, while rainfall increasing enhanced wheat yield by 4.0%. The results indicate that the positive effect of nighttime warming on CH4 uptake and negative effect on wheat yield can be offset by rainfall increasing in the NCP. Generally, rainfall increasing significantly raised the global warming potential and greenhouse gas intensity induced by CH4 and N2O emissions. Overall, this study improves our understanding of agroecosystem C and N cycling in response to nighttime warming and rainfall increasing under future climate change.

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 145
Author(s):  
Rui Yang ◽  
Panhong Dai ◽  
Bin Wang ◽  
Tao Jin ◽  
Ke Liu ◽  
...  

Global warming and altered precipitation patterns pose a serious threat to crop production in the North China Plain (NCP). Quantifying the frequency of adverse climate events (e.g., frost, heat and drought) under future climates and assessing how those climatic extreme events would affect yield are important to effectively inform and make science-based adaptation options for agriculture in a changing climate. In this study, we evaluated the effects of heat and frost stress during sensitive phenological stages at four representative sites in the NCP using the APSIM-wheat model. climate data included historical and future climates, the latter being informed by projections from 22 Global Climate Models (GCMs) in the Coupled Model Inter-comparison Project phase 6 (CMIP6) for the period 2031–2060 (2050s). Our results show that current projections of future wheat yield potential in the North China Plain may be overestimated; after more accurately accounting for the effects of frost and heat stress in the model, yield projections for 2031-60 decreased from 31% to 9%. Clustering of common drought-stress seasonal patterns into key groups revealed that moderate drought stress environments are likely to be alleviated in the future, although the frequency of severe drought-stress environments would remain similar (25%) to that occurring under the current climate. We highlight the importance of mechanistically accounting for temperature stress on crop physiology, enabling more robust projections of crop yields under future the burgeoning climate crisis.


2022 ◽  
Vol 276 ◽  
pp. 108366
Author(s):  
He Xiao ◽  
Harold M. van Es ◽  
Joseph P. Amsili ◽  
Qianqian Shi ◽  
Jingbo Sun ◽  
...  

2017 ◽  
Vol 205 ◽  
pp. 135-146 ◽  
Author(s):  
Yuechen Tan ◽  
Cong Xu ◽  
Dongxue Liu ◽  
Wenliang Wu ◽  
Rattan Lal ◽  
...  

2011 ◽  
Vol 33 (4) ◽  
pp. 1029-1041 ◽  
Author(s):  
Chunjiang Zhao ◽  
Yansong Bao ◽  
Maosi Cheng ◽  
Wenjiang Huang ◽  
Liangyun Liu

Sign in / Sign up

Export Citation Format

Share Document