scholarly journals Grain size dependent photoresponsivity in GaAs films formed on glass with Ge seed layers

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. Nishida ◽  
K. Igura ◽  
T. Imajo ◽  
T. Suemasu ◽  
K. Toko

AbstractThe strong correlation between grain size and photoresponsivity in polycrystalline GaAs films on glass was experimentally demonstrated using Ge seed layers with a wide range of grain sizes (1‒330 μm). The crystal evaluations using Raman spectroscopy, scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy revealed that 500-nm-thick GaAs films epitaxially grown from the Ge seed layers at 550 °C inherited the grain boundaries and crystal orientations in Ge. With increasing grain size, the photoresponsivity corresponding to GaAs increased from 0.01 to 3 A W−1 under a bias voltage of 0.3 V. The maximum value approached that of the GaAs film formed simultaneously on a single-crystal Ge wafer, indicating the high potential of the large-grained GaAs film. Knowledge gained from this study will be essential for designing advanced solar cells based on polycrystalline III–V compound semiconductors using inexpensive substrates.

2013 ◽  
Vol 19 (S4) ◽  
pp. 103-104
Author(s):  
C.B. Garcia ◽  
E. Ariza ◽  
C.J. Tavares

Zinc Oxide is a wide band-gap compound semiconductor that has been used in optoelectronic and photovoltaic applications due to its good electrical and optical properties. Aluminium has been an efficient n-type dopant for ZnO to produce low resistivity films and high transparency to visible light. In addition, the improvement of these properties also depends on the morphology, crystalline structure and deposition parameters. In this work, ZnO:Al films were produced by d.c. pulsed magnetron sputtering deposition from a ZnO ceramic target (2.0 wt% Al2O3) on glass substrates, at a temperature of 250 ºC.The crystallographic orientation of aluminum doped zinc oxide (ZnO:Al) thin films has been studied by Electron Backscatter Diffraction (EBSD) technique. EBSD coupled with Scanning Electron Microscopy (SEM) is a powerful tool for the microstructural and crystallographic characterization of a wide range of materials.The investigation by EBSD technique of such films presents some challenges since this analysis requires a flat and smooth surface. This is a necessary condition to avoid any shadow effects during the experiments performed with high tilting conditions (70º). This is also essential to ensure a good control of the three dimensional projection of the crystalline axes on the geometrical references related to the sample.Crystalline texture is described by the inverse pole figure (IPF) maps (Figure 1). Through EBSD analysis it was observed that the external surface of the film presents a strong texture on the basal plane orientation (grains highlighted in red colour). Furthermore it was possible to verify that the grain size strongly depends on the deposition time (Figure 1 (a) and (b)). The electrical and optical film properties improve with increasing of the grain size, which can be mainly, attributed to the decrease in scattering grain boundaries which leads to an increasing in carrier mobility (Figure 2).The authors kindly acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) scientific program for the National Network of Electron Microscopy (RNME) EDE/1511/RME/2005.


2016 ◽  
Vol 61 (1) ◽  
pp. 461-468 ◽  
Author(s):  
M. Bieda ◽  
S. Boczkal ◽  
P. Koprowski ◽  
K. Sztwiertnia ◽  
K. Pieła

Pure aluminium (6N) and commercially pure aluminium (99.7) was deformed by KOBO method. Microstructure and texture of both materials after deformation was analyzed by means of scanning and transmission electron microscopy. Advanced methods of crystallographic orientations measurements like Electron Backscatter Diffraction - EBSD (SEM) and microdiffraction (TEM) was used. Grain size distribution and misorientation between grains in cross and longitudinal sections of the samples were analyzed. Differences in size and homogeneity of the grains were observed in both materials. Pure aluminium was characterized by larger grain size in both sections of extruded material. Whereas commercially pure aluminium reveals smaller grain size and more homogeneous and stable microstructure.


2009 ◽  
Vol 24 (3) ◽  
pp. 647-651 ◽  
Author(s):  
M. Rester ◽  
C. Motz ◽  
R. Pippan

Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analyses of small indentations in copper single crystals exhibit only slight changes of the crystal orientation in the surroundings of the imprints. Far-reaching dislocations might be the reason for these small misorientation changes. Using EBSD and TEM technique, this work makes an attempt to visualize the far-propagating dislocations by introducing a twin boundary in the vicinity of small indentations. Because dislocations piled up at the twin boundary produce a misorientation gradient, the otherwise far-propagating dislocations can be detected.


2021 ◽  
Author(s):  
Olga Ageeva ◽  
Ge Bian ◽  
Gerlinde Habler ◽  
Rainer Abart

<p>Magnetite micro-inclusions in silicate minerals are important carriers of the remanent magnetization of rocks. Their shape orientation relationships (SOR) and crystallographic orientation relationships (COR) to the host crystal are of interest in the context of the bulk magnetic properties of the inclusion-host assemblage. We investigated the SOR and COR of magnetite (MT) micro-inclusions in plagioclase (PL) from oceanic gabbro using correlated optical microscopy, scanning electron microscopy, Electron backscatter diffraction analysis and Transmission electron microscopy.</p><p>In the mm-sized PL crystals of the investigated gabbros MT is present as equant, needle- and lath-shaped (sub)micrometer sized inclusions. More than 95% of the needle-shaped inclusions show SOR and specific COR to the plagioclase host. Most of the needles are elongated perpendicular to one of the MT{111} planes, which is aligned parallel to one of the (112), (1-12), (-312), (-3-12), (150), (1-50) or (100) planes of plagioclase. These inclusions are classified as “plane-normal type”. The needle elongation parallel to MT<111>, which is the easy direction of magnetization, ensures high magnetic susceptibility of these inclusions. The underlying formation mechanism is related to the parallel alignment of oxygen layers with similar lattice spacing across the MT-PL interfaces that are parallel to the elongation direction [1].</p><p>Apart from the SOR and the alignment of a MT{111} with one of the PL low index planes, the MT crystals rotate about the needle elongation direction. The rotation angles are statistically distributed with several maxima representing specific orientation relationships. In some cases one of the MT<001> axes is aligned with PL[14 10 7] or PL[-14 10 -7], which ensures that FeO<sub>6 </sub>octahedra of MT well fit into channels // [001] of PL, which are formed by six membered rings of SiO<sub>4</sub> and AlO<sub>4</sub> tetrahedra [2]. This COR is referred to as the “nucleation orientation” of magnetite with respect to PL. There are several other possibilities to fit FeO<sub>6</sub> octahedra into the [001] channels of PL, but the alignment stated above allows for the additional parallel alignment of one of the MT{111} with one of the above mentioned low index lattice planes of PL. MT crystals with one of these nucleation orientations can undergo directional growth to develop laths and needles. MT crystals with other nucleation orientations that do not allow for the parallel alignment of MT{111} with the above mentioned PL lattice planes, do not significantly grow and form the equant inclusions.</p><p>For some needles one or more of the MT{011} planes that are parallel to the needle elongation direction, are aligned with low-index planes of plagioclase such as PL (112), PL(150), PL(1-50) etc., and form MT facets. This situation corresponds to achievement of the best possible match between the two crystal lattices. This can either be generated during primary growth or during re-equilibration of the micro-inclusions and the plagioclase host.</p><p>Funding by RFBR project 18-55-14003 and Austrian Science fund (FWF): I 3998-N29 is acknowledged.</p><p>Reference</p><p>[1] Ageeva et al (2020) Contrib. Mineral. Petrol. 175(10), 1-16.</p><p>[2] Wenk et al (2011) Am. Min. 96, 1316-1324</p>


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3869
Author(s):  
Mengmeng Wang ◽  
Jiang Ju ◽  
Jingjing Li ◽  
Yang Zhou ◽  
Haiyang Lv ◽  
...  

A periodic-layered structure was observed in solid-(Cr, Fe)2B/liquid-Al diffusion couple at 750 °C. The interface morphology, the reaction products, and the potential formation mechanism of this periodic-layered structure were investigated using an electron probe microanalyzer (EPMA), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), and energy-dispersive spectroscopy (EDS). The results indicate that the reaction between (Cr, Fe)2B and liquid Al is a diffusion-controlled process. The formation of intermetallics involves both the superficial dissolution of Fe and Cr atoms and the inward diffusion of Al at the interface. The layered structure, as characterized by various experimental techniques, is alternated by a single FeAl3 layer and a (FeAl3 + Cr3AlB4) dual-phase layer. A potential mechanism describing the formation process of this periodic-layered structure was proposed based on the diffusion kinetics based on the experimental results.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1018
Author(s):  
Sejin Jung ◽  
Takafumi Yamamoto ◽  
Jun-ichi Ando ◽  
Haemyeong Jung

Amphibole peridotite samples from Åheim, Norway, were analyzed to understand the deformation mechanism and microstructural evolution of olivine and amphibole through the Scandian Orogeny and subsequent exhumation process. Three Åheim amphibole peridotite samples were selected for detailed microstructural analysis. The Åheim amphibole peridotites exhibit porphyroclastic texture, abundant subgrain boundaries in olivine, and the evidence of localized shear deformation in the tremolite-rich layer. Two different types of olivine lattice preferred orientations (LPOs) were observed: B- and A-type LPOs. Electron backscatter diffraction (EBSD) mapping and transmission electron microscopy (TEM) observations revealed that most subgrain boundaries in olivine consist of dislocations with a (001)[100] slip system. The subgrain boundaries in olivine may have resulted from the deformation of olivine with moderate water content. In addition, TEM observations using a thickness-fringe method showed that the free dislocations of olivine with the (010)[100] slip system were dominant in the peridotites. Our data suggest that the subgrain boundaries and free dislocations in olivine represent a product of later-stage deformation associated with the exhumation process. EBSD mapping of the tremolite-rich layer revealed intracrystalline plasticity in amphibole, which can be interpreted as the activation of the (100)[001] slip system.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3061 ◽  
Author(s):  
Jiajia Qiu ◽  
Min Zhang ◽  
Zhunli Tan ◽  
Guhui Gao ◽  
Bingzhe Bai

A bainite/martensite multiphase rail is treated by the controlled-cooling process with different finish-cooling temperatures. The simulated temperature–time curves of the position of 5 mm and 15 mm below the rail tread (P5 and P15) express different trends. P5 has greater impact toughness and lower tensile strength than P15. Microstructural characterization was carried out by conducting scanning electron microscopy, X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The greater tensile strength is due to the dispersed ε-carbides hindering the movement of dislocations. The greater impact toughness is attributed to the filmy retained austenite and the smaller effective grain with high-angle boundary. Finite element modeling (FEM) and microstructural characterization reasonably explain the changes of mechanical properties. The present work provides experimental and theoretical guidance for the development of rail with excellent mechanical properties.


2014 ◽  
Vol 67 (5) ◽  
pp. 790
Author(s):  
Jiang Wang ◽  
Jian Li ◽  
Youwen Wang

One-dimensional PbTiO3 nanowires 40–500 nm in diameter and ~400 μm in length were synthesized via a hydrothermal strategy and characterized by X-ray diffraction, electron backscatter diffraction, scanning electron microscopy, and transmission electron microscopy. The results show that the PbTiO3 nanowires exhibit a new acicular crystal structure, which is a tetragonal superstructure composed of a large unit cell of 40 atoms (Pb : Ti : O = 1 : 1 : 3) with a = 12.35 Å, c = 3.83 Å. The PbTiO3 has a feature of unidirectional bending when observed through transmission electron microscopy several times. The bending can be controlled by the electron beam intensity in transmission electron microscopy and the bending process is reversible. Moreover, a possible mechanism for the bending behaviour was also studied, which indicates that macroscopic polarization is in the {110} plane and the direction is not consistent with the electric field, giving the possible driving force for the bending.


2013 ◽  
Vol 19 (1) ◽  
pp. 120-131 ◽  
Author(s):  
I. Hemmati ◽  
J.C. Rao ◽  
V. Ocelík ◽  
J.Th.M. De Hosson

AbstractDuring laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy Ni-Cr-B-Si-C coating deposited by laser cladding were analyzed by a combination of several microscopy characterization techniques including scanning electron microscopy in secondary and backscatter imaging modes, energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The combination of EDS and EBSD allowed unequivocal identification of micron-sized precipitates as polycrystalline orthorhombic CrB, single crystal tetragonal Cr5B3, and single crystal hexagonal Cr7C3. In addition, TEM characterization showed various equilibrium and metastable Ni-B, Ni-Si, and Ni-Si-B eutectic products in the alloy matrix. The findings of this study can be used to explain the phase formation reactions and to tune the microstructure of Ni-Cr-B-Si-C coatings to obtain the desired properties.


Sign in / Sign up

Export Citation Format

Share Document