layered structure
Recently Published Documents


TOTAL DOCUMENTS

2312
(FIVE YEARS 458)

H-INDEX

64
(FIVE YEARS 14)

Author(s):  
Takaaki Fukuchi ◽  
Naoki Mori ◽  
Takahiro Hayashi

Abstract Controlling sound fields is a key technology for noise removal, acoustic lenses, energy harvesting, etc. This study investigated the control of sound field by a periodic layered structure. At first, we formulated the wave propagation in a periodic layered structure and proved that the wave fields constructed by the periodic boundary conditions are limited to plane wave modes with discretely different propagation directions. Numerical calculations clarified that the desired plane wave mode can be obtained in the transmitted wave through an intermediate thin-plate stacked region in a periodic layered structure, in which Lamb waves travel in each plate at different phase velocities and create phase difference at the exit of the intermediate thin-plate region. Further numerical investigations revealed that tuning frequency and length of the thin-plate region provides wave field more dominantly with a single wanted plane wave mode.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Hong-Yan Lin ◽  
Qian-Qian Liu ◽  
Yuan Tian ◽  
Ling Zeng

Abstract Two new metal-organic compounds (MOCs) [Cu(L)0.5(3-nba)2] (1) and [Cu(L)(2,5-tdc)] (2) have been hydrothermally synthesized by employing the ligand N,N′-di(3-pyridyl)adipoamide (L) and two carboxylic acids (3-Hnba = 3-nitrobenzoic acid, 2,5-H2tdc = 2,5-thiophenedicarboxylic acid) as ligands. Compound 1 displays a metal-organic chain-like structure formed by the {Cu2(3-nba)4} double-paddle wheel units and the µ 2-bridging L ligands. The adjacent polymeric chains form a supramolecular layered structure through hydrogen bonding. Compound 2 shows a 3D metal-organic polymeric framework derived from Cu-L layers and µ 2-bridging 2,5-tdc ligands, which presents a 3,5-connected {4.62}{4.66.83} topology. The electrochemical and electrocatalytic behavior of the two compounds has been studied in detail. Carbon paste working electrodes modified with compounds 1 and 2 can be used as highly selective sensors for detecting traces Cr(VI). Both electrodes show also electrocatalytic performance in oxygen evolution reactions (OERs).


2022 ◽  
Author(s):  
Vincenzo Fiumara ◽  
Paolo Addesso ◽  
Francesco Chiadini ◽  
Antonio Scaglione

Abstract Disordered multilayers consisting of alternating layers of two lossless dielectric materials with random thicknesses can behave as good reflectors in wide wavelength ranges except for narrow bands where the transmittance is significative. We use a dedicated genetic algorithm to select different configurations (thickness sequences) of such structures which exhibit very low transmittance in the entire visible wavelength range, showing that broadband disordered reflectors with very high performance can be designed. A statistical analysis of the thickness sequences selected by the genetic algorithm reveals that such sequences are characterized by correlated disorder and that the degree of autocorrelation is a key parameter in determining the reflection performance.


2022 ◽  
pp. 131654
Author(s):  
Shuimiao Xia ◽  
Zhicheng Shi ◽  
Liang Sun ◽  
Shengbiao Sun ◽  
Davoud Dastan ◽  
...  

2022 ◽  
pp. 122881
Author(s):  
Chuanhai Jiang ◽  
Xiaokang Wang ◽  
Kebin Lu ◽  
Weifeng Jiang ◽  
Huakai Xu ◽  
...  

2022 ◽  
Author(s):  
Xue Han ◽  
Min Wang ◽  
Jingxian Yu ◽  
Shengping Wang

The reversible layered structure of TiS2 with relaxation, such as a spring, was obtained by controlling the optimized potential range of 0.9-2.8 V (vs. Li+/Li) to yield high discharge capacity,...


CrystEngComm ◽  
2022 ◽  
Author(s):  
Junfeng Zhang ◽  
Qing Lei ◽  
Lindong Luan ◽  
Hongmei Zeng ◽  
Guohong Zou ◽  
...  

Two N-methylimidazolium containing metal phosphate-oxalates (denoted SCU-40 and SCU-42) were prepared under solvent-free conditions. SCU-40 has a three-dimensional structure with a zeolitic crb topology, while SCU-42 has a layered structure...


Sign in / Sign up

Export Citation Format

Share Document