scholarly journals Highly efficient reusable superhydrophobic sponge prepared by a facile, simple and cost effective biomimetic bonding method for oil absorption

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiaqi Wang ◽  
Yan Chen ◽  
Qinyao Xu ◽  
Miaomiao Cai ◽  
Qian Shi ◽  
...  

AbstractSuperhydrophobic sponges have considerable potential for oil/water separation. Most of the methods used for superhydrophobic modification of sponges require toxic or harmful solvents, which have the drawbacks of hazardous to environment, expensive, and complex to utilize. Moreover, the hydrophobic layer on the surface of sponge is often easily destroyed. In this paper, a highly efficient superhydrophobic sponge with excellent reusability was developed by using a facile, simple and environmentally friendly dopamine biomimetic bonding method. Different types of sponges, such as melamine, polyethylene or polyurethane sponge wastes, were used as raw materials to prepare superhydrophobic sponges, which possess the advantages of inexpensive and abundant. The effects of different dopamine polymerization time and different hydrophobic agent dosage on the hydrophobicity and oil absorption capacity of melamine sponges were optimized. The study results showed that the water contact angle of the superhydrophobic sponge could reach 153° with excellent organic solvent absorption capacity of 165.9 g/g. Furthermore, the superhydrophobic sponge retained approximately 92.1% of its initial absorption capacity after 35 reutilization cycles. More importantly, the dopamine biomimetic bonding superhydrophobic modification method can be used for different types of sponges. Therefore, a universally applicable, facile, simple and environmentally friendly superhydrophobic modification method for sponges was developed.

Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 97 ◽  
Author(s):  
Yu-Ping Zhang ◽  
Jing-Hua Yang ◽  
Ling-Li Li ◽  
Cheng-Xing Cui ◽  
Ying Li ◽  
...  

Membrane-based metal substrates with special surface wettability have been applied widely for oil/water separation. In this work, a series of copper foams with superhydrophobicity and superoleophilicity were chemically etched using 10 mg mL−1 FeCl3/HCl solution with consequent ultrasonication, followed by the subsequent modification of four sulfhydryl compounds. A water contact angle of 158° and a sliding angle lower than 5° were achieved for the copper foam modified using 10 mM n-octadecanethiol solution in ethanol. In addition, the interaction mechanism was initially investigated, indicating the coordination between copper atoms with vacant orbital and sulfur atoms with lone pair electrons. In addition, the polymeric fibers were electrospun through the dissolution of polystyrene in a good solvent of chlorobenzene, and a nonsolvent of dimethyl sulfoxide. Oil absorption and collection over the water surface were carried out by the miniature boat made out of copper foam, a string bag of as-spun PS fibers with high oil absorption capacity, or the porous boat embedded with the as-spun fibers, respectively. The findings might provide a simple and practical combinational method for the solution of oil spill.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1593 ◽  
Author(s):  
Hajo Yagoub ◽  
Liping Zhu ◽  
Mahmoud H. M. A. Shibraen ◽  
Ali A. Altam ◽  
Dafaalla M. D. Babiker ◽  
...  

The complex aerogel generated from nano-polysaccharides, chitin nanocrystals (ChiNC) and TEMPO-oxidized cellulose nanofibers (TCNF), and its derivative cationic guar gum (CGG) is successfully prepared via a facile freeze-drying method with glutaraldehyde (GA) as cross-linkers. The complexation of ChiNC, TCNF, and CGG is shown to be helpful in creating a porous structure in the three-dimensional aerogel, which creates within the aerogel with large pore volume and excellent compressive properties. The ChiNC/TCNF/CGG aerogel is then modified with methyltrichlorosilane (MTCS) to obtain superhydrophobicity/superoleophilicity and used for oil–water separation. The successful modification is demonstrated through FTIR, XPS, and surface wettability studies. A water contact angle of 155° on the aerogel surface and 150° on the surface of the inside part of aerogel are obtained for the MTCS-modified ChiNC/TCNF/CGG aerogel, resulting in its effective absorption of corn oil and organic solvents (toluene, n-hexane, and trichloromethane) from both beneath and at the surface of water with excellent absorption capacity (i.e., 21.9 g/g for trichloromethane). More importantly, the modified aerogel can be used to continuously separate oil from water with the assistance of a vacuum setup and maintains a high absorption capacity after being used for 10 cycles. The as-prepared superhydrophobic/superoleophilic ChiNC/TCNF/CGG aerogel can be used as a promising absorbent material for the removal of oil from aqueous media.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1629
Author(s):  
Xuecheng Yu ◽  
Ying Xiong ◽  
Zhen Li ◽  
Hongding Tang

Three series of silicone modified polyurethane acrylate (SPUA) prepolymers were prepared from dicyclohexylmethane-4, 4′-diisocyanate (HMDI), PPG1000, triethylene glycol (TEG), 2-hydroxyethyl acrylate (HEA), and multi-hydroxyalkyl silicone (MI-III) with tris(trimethylsiloxy)silyl propyl side groups. Their structures were confirmed by 1H NMR, 13C NMR, and Fourier transformed infrared (FTIR) analysis, and SPUA films were obtained by UV curing. The properties of films were investigated by attenuated total reflection (ATR)-FTIR, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), water contact angle (WCA), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), water and hexane resistance, and tensile testing. The results showed that the structures and dosages of MI-III could influence the polymerization properties, surface properties, water and n-hexane resistance, and thermal and tensile properties of SPUA. For instance, the surface aggregation of tris(trimethylsiloxy)silyl propyl groups (even ~2.5 wt%) could endow SPUA films with less microphase separation, good hydrophobicity, lipophilicity, thermal stability, and mechanical properties. Interestingly, obvious regular winkles appeared on the surfaces of SPUAIII films, which are characterized by relatively high WCA values. However, relatively smooth were observed on the surfaces of SPUAIII films, which also exhibit lower water absorption ratio values. Furthermore, the ordinary cotton textiles would be transformed into hydrophobic and oleophilic textiles after treating with SPUA simply, and they were used in the oil/water separation study. Among them, consistent with water and hexane resistance analysis of SPUA films, SPUAII treated cotton textiles are characterized by relatively small liquid absorption capacity (LAC) values. Thus, phenyl groups and side-chain tris(trimethylsiloxy)silyl propyl groups are helpful to improve the hydrophobicity and lipophilicity of SPUA films. SPUAII-5 (even with 5 wt% MII) treated cotton textiles could efficiently separate the oil/water mixture, such as n-hexane, cyclohexane, or methylbenzene with water. Thus, this material has great potential in the application of hydrophobic treatment, oil/water separation, and industrial sewage emissions, among others.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3344
Author(s):  
De Liu ◽  
Shiying Wang ◽  
Tao Wu ◽  
Yujiang Li

The influence of different coupling agents and coupling times on the wettability of a polyurethane (PU) sponge surface were optimized. Octadecyltrichlorosilane (OTS) was selected as the optimal coupling agent to prepare the superhydrophobic sponge. The superhydrophobic sponge was prepared in one step, which has the advantages of simple operation and enhanced durability. The superhydrophobic sponge was characterized by scanning electron microscopy, Teclis Tracker tensiometry, and Fourier transform infrared (FT-IR) spectrophotometry. The water contact angle increased from 64.1° to 151.3°, exhibiting ideal superhydrophobicity. Oils and organic solvents with different viscosities and densities can be rapidly and selectively absorbed by superhydrophobic sponges, with an absorption capacity of 14.99 to 86.53 times the weight of the sponge itself, without absorbing any water. Since temperature affects the viscosity and ionic strength of oil, and influences the surface wettability of the sponges, the effect of temperature and ionic strength on the oil absorption capacity of the superhydrophobic sponges was measured, and its mechanism was elucidated. The results showed that the absorptive capacity retained more than 90% of the initial absorptive capacity after repeated use for 10 times. Low-cost, durable superhydrophobic sponges show great potential for large-scale oil-water separation.


Author(s):  
Niken Aprilia Eka Putri ◽  
Arif Tjahjono ◽  
Perdamean Sebayang

In this research, a modification of polyurethane (PU) sponge material has been made to obtain superhydrophobic-superoleophilic properties. The PU sponge was coated with several nanomaterials such as ZnO, Fe3O4+TEOS, and stearic acid by dip-coating and drop-coating methods. The tests include selective separation of oil and water with a magnetic response. Several types of oil and organic solvents were tested for absorption capacity. The results showed that the PU@ZnO@Fe3O4@SA sponge has a good absorption capacity, from 4.37 mL to 7.37 mL. The fabricated PU sponge could selectively separate oil from water with a separation efficiency above 99%. The fabricated PU sponge also could be magnetically driven by external magnetic fields. From the characterization using 3D OM, the water contact angle was 153.38°, which indicates that the PU@ZnO@Fe3O4@SA sponge is superhydrophobic. And from surface morphology obtained an average pore size diameter of 167.475 μm.


RSC Advances ◽  
2015 ◽  
Vol 5 (86) ◽  
pp. 70025-70031 ◽  
Author(s):  
Xiang Ge ◽  
Wei Yang ◽  
Jitong Wang ◽  
Donghui Long ◽  
Licheng Ling ◽  
...  

Carbon nanofiber sponges composed of three-dimensional networks have been prepared though chemical vapor deposition. Such sponges exhibit controllable bulk density, admirable mechanical flexibility and high oil absorption capacity.


2022 ◽  
Vol 906 ◽  
pp. 25-29
Author(s):  
Marine Kalantaryan ◽  
Nikolay Chilingaryan ◽  
Armine Meymaryan

In the last decade, a continuous increasing research activity is focused on the surface modification of natural porous materials for the efficient removal of oil contaminants from water. A continuous in-situ oil/water separation technique for oil spill cleanup had been designed using surface modified Irind mine pumice as a sorbent. Irind mine pumice is an aluminosilicate rock, with well-developed porosity, mechanical strength, high buoyancy, chemically inert and eco-friendly, therefore it must exhibit certain water-and oil absorption capacities. The modified pumice absorbs a broad variety of oils and organic solvents with high oil absorption capacity and negligible water take-up at both static and dynamic conditions. Irind mine pumice have been used with grain sizes ranging from 2.5 ... 5.0 mm. Oligomethylhydride siloxane is used as a modifier.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1182 ◽  
Author(s):  
Yo Seph Lee ◽  
Yong Taek Lim ◽  
Won San Choi

Environmentally friendly superhydrophilic and superhydrophobic sponges were synthesized using a one-step approach for oil/water separation. A superhydrophilic or superhydrophobic sponge (MFS/CC-DKGM or MFS/CC-PDMS) was synthesized by one-step coating of melamine formaldehyde sponge (MFS) with a mixture of calcium carbonate (CC) rods and deacetylized Konjac glucomannan (DKGM) [or polydimethylsiloxane (PDMS)]. The MFS/CC-PDMS showed excellent absorption capacity, which reached 52–76 g/g following immersion into various types of oil/water mixtures. Furthermore, the MFS/CC-DKGM and MFS/CC-PDMS exhibited excellent water- and oil-flux performances, which reached 4,702 L/m2 h and 19,591 L/m2 h, respectively, when they were used as filters. The MFS/CC-DKGM and MFS/CC-PDMS maintained their wettability characteristics relatively well after the chemical, thermal, and mechanical stability tests.


Sign in / Sign up

Export Citation Format

Share Document