Complex Aerogels Generated from Nano-Polysaccharides and Its Derivatives for Oil–Water Separation
The complex aerogel generated from nano-polysaccharides, chitin nanocrystals (ChiNC) and TEMPO-oxidized cellulose nanofibers (TCNF), and its derivative cationic guar gum (CGG) is successfully prepared via a facile freeze-drying method with glutaraldehyde (GA) as cross-linkers. The complexation of ChiNC, TCNF, and CGG is shown to be helpful in creating a porous structure in the three-dimensional aerogel, which creates within the aerogel with large pore volume and excellent compressive properties. The ChiNC/TCNF/CGG aerogel is then modified with methyltrichlorosilane (MTCS) to obtain superhydrophobicity/superoleophilicity and used for oil–water separation. The successful modification is demonstrated through FTIR, XPS, and surface wettability studies. A water contact angle of 155° on the aerogel surface and 150° on the surface of the inside part of aerogel are obtained for the MTCS-modified ChiNC/TCNF/CGG aerogel, resulting in its effective absorption of corn oil and organic solvents (toluene, n-hexane, and trichloromethane) from both beneath and at the surface of water with excellent absorption capacity (i.e., 21.9 g/g for trichloromethane). More importantly, the modified aerogel can be used to continuously separate oil from water with the assistance of a vacuum setup and maintains a high absorption capacity after being used for 10 cycles. The as-prepared superhydrophobic/superoleophilic ChiNC/TCNF/CGG aerogel can be used as a promising absorbent material for the removal of oil from aqueous media.