scholarly journals Effect of nocturnal oxygen therapy on exercise performance of COPD patients at 2048 m: data from a randomized clinical trial

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sophia Gutweniger ◽  
Tsogyal D. Latshang ◽  
Sayaka S. Aeschbacher ◽  
Fabienne Huber ◽  
Deborah Flueck ◽  
...  

AbstractThis trial evaluates whether nocturnal oxygen therapy (NOT) during a stay at 2048 m improves altitude-induced exercise intolerance in lowlanders with chronic obstructive pulmonary disease (COPD). 32 lowlanders with moderate to severe COPD, mean ± SD forced expiratory volume in the first second of expiration (FEV1) 54 ± 13% predicted, stayed for 2 days at 2048 m twice, once with NOT, once with placebo according to a randomized, crossover trial with a 2-week washout period at < 800 m in-between. Semi-supine, constant-load cycle exercise to exhaustion at 60% of maximal work-rate was performed at 490 m and after the first night at 2048 m. Endurance time was the primary outcome. Additional outcomes were cerebral tissue oxygenation (CTO), arterial blood gases and breath-by-breath measurements (http://www.ClinicalTrials.gov NCT02150590). Mean ± SE endurance time at 490 m was 602 ± 65 s, at 2048 m after placebo 345 ± 62 s and at 2048 m after NOT 293 ± 60 s, respectively (P < 0.001 vs. 490 m). Mean difference (95%CI) NOT versus placebo was − 52 s (− 174 to 70), P = 0.401. End-exercise pulse oximetry (SpO2), CTO and minute ventilation ($${\dot{\text{V}}}_{{\text{E}}}$$ V ˙ E ) at 490 m were: SpO2 92 ± 1%, CTO 65 ± 1%, $${\dot{\text{V}}}_{{\text{E}}}$$ V ˙ E 37.7 ± 2.0 L/min; at 2048 m with placebo: SpO2 85 ± 1%, CTO 61 ± 1%, $${\dot{\text{V}}}_{{\text{E}}}$$ V ˙ E  40.6 ± 2.0 L/min and with NOT: SpO2 84 ± 1%; CTO 61 ± 1%; $${\dot{\text{V}}}_{{\text{E}}}$$ V ˙ E  40.6 ± 2.0 L/min (P < 0.05, SpO2, CTO at 2048 m with placebo vs. 490 m; P = NS, NOT vs. placebo). Altitude-related hypoxemia and cerebral hypoxia impaired exercise endurance in patients with moderate to severe COPD and were not prevented by NOT.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Shaonan Liu ◽  
Johannah Shergis ◽  
Xiankun Chen ◽  
Xuhua Yu ◽  
Xinfeng Guo ◽  
...  

Objective. To evaluate the efficacy and safety ofWeijingdecoction combined with routine pharmacotherapy (RP) for the treatment of acute exacerbations of chronic obstructive pulmonary disease (AECOPD).Methods. Randomized controlled trials (RCT) evaluatingWeijingdecoction for AECOPD were included. English, Chinese, and Japanese databases were searched from their respective inceptions to June 2013. The methodological quality was assessed according to the Cochrane Collaboration’s risk of bias tool. All data were analyzed and synthesized using RevMan 5.2 software.Results. Fifteen (15) studies involving 986 participants were included. Participants were diagnosed with COPD in the acute exacerbation stage. In addition, most of studies reported that they included participants with the Chinese medicine syndrome, phlegm-heat obstructing the Lung.Weijingdecoction combined with RP improved lung function (forced expiratory volume in one second; FEV1), arterial blood gases (PaO2 and PaCO2), clinical effective rate, and reduced inflammatory biomarkers (TNF-αand IL-8) when compared with RP alone. No severe adverse events were reported in these studies.Conclusions.Weijingdecoction appeared to be beneficial for AECOPD and well-tolerated when taken concurrently with RP, such as antibiotics, bronchodilators (oral and inhaled), and mucolytics.


2000 ◽  
Vol 88 (5) ◽  
pp. 1715-1720 ◽  
Author(s):  
Paolo Palange ◽  
Silvia Forte ◽  
Paolo Onorati ◽  
Felice Manfredi ◽  
Pietro Serra ◽  
...  

To test the hypothesis that in chronic obstructive pulmonary disease (COPD) patients the ventilatory and metabolic requirements during cycling and walking exercise are different, paralleling the level of breathlessness, we studied nine patients with moderate to severe, stable COPD. Each subject underwent two exercise protocols: a 1-min incremental cycle ergometer exercise (C) and a “shuttle” walking test (W). Oxygen uptake (V˙o 2), CO2output (V˙co 2), minute ventilation (V˙e), and heart rate (HR) were measured with a portable telemetric system. Venous blood lactates were monitored. Measurements of arterial blood gases and pH were obtained in seven patients. Physiological dead space-tidal volume ratio (Vd/Vt) was computed. At peak exercise, W vs. CV˙o 2,V˙e, and HR values were similar, whereasV˙co 2 (848 ± 69 vs. 1,225 ± 45 ml/min; P < 0.001) and lactate (1.5 ± 0.2 vs. 4.1 ± 0.2 meq/l; P < 0.001) were lower, ΔV˙e/ΔV˙co 2(35.7 ± 1.7 vs. 25.9 ± 1.3; P < 0.001) and ΔHR/ΔV˙o 2values (51 ± 3 vs. 40 ± 4; P < 0.05) were significantly higher. Analyses of arterial blood gases at peak exercise revealed higher Vd/Vt and lower arterial partial pressure of oxygen values for W compared with C. In COPD, reduced walking capacity is associated with an excessively high ventilatory demand. Decreased pulmonary gas exchange efficiency and arterial hypoxemia are likely to be responsible for the observed findings.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Eman Sobh ◽  
Fatma Elhussieny ◽  
Taghreed Ismail

Abstract Background Nasal obstruction is a significant medical problem. This study aimed to examine the effect of nasal obstruction and nasal packing on arterial blood gases and pulmonary function indices, and the impact of the elimination of nasal obstruction on preoperative values. Results The mean age of the study population was 26.6 ± 10.1 years, males represented 50.8%. Spirometric indices showed statistically significant improvement (preoperative forced expiratory volume in 1st second 66.9 ± 13.9 vs 79.6 ± 14.9 postoperative and preoperative forced vital capacity 65.5 ± 12.7 vs 80.4 ± 13.8 postoperative). Oxygen saturation was significantly lower during nasal packing (95.6 ± 1.6 preoperative vs 94.7 ± 2.8 with nasal pack), and significant improvement (97.2 ± 1.4) was observed after removal of the nasal pack. Nasal obstruction scores significantly improved. Conclusion The results of this study indicate that either simple nasal obstruction or nasal packing may cause hypoxemia and abnormalities in lung function tests. Hypoxemia was more evident with nasal packing.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Sandeep Bansal ◽  
Martin Anderson ◽  
Antonio Anzueto ◽  
Nicola Brown ◽  
Chris Compton ◽  
...  

AbstractChronic obstructive pulmonary disease (COPD) treatment guidelines do not currently include recommendations for escalation directly from monotherapy to triple therapy. This 12-week, double-blind, double-dummy study randomized 800 symptomatic moderate-to-very-severe COPD patients receiving tiotropium (TIO) for ≥3 months to once-daily fluticasone furoate/umeclidinium/vilanterol (FF/UMEC/VI) 100/62.5/25 mcg via ELLIPTA (n = 400) or TIO 18 mcg via HandiHaler (n = 400) plus matched placebo. Study endpoints included change from baseline in trough forced expiratory volume in 1 s (FEV1) at Days 85 (primary), 28 and 84 (secondary), health status (St George’s Respiratory Questionnaire [SGRQ] and COPD Assessment Test [CAT]) and safety. FF/UMEC/VI significantly improved trough FEV1 at all timepoints (Day 85 treatment difference [95% CI] 95 mL [62–128]; P < 0.001), and significantly improved SGRQ and CAT versus TIO. Treatment safety profiles were similar. Once-daily single-inhaler FF/UMEC/VI significantly improved lung function and health status versus once-daily TIO in symptomatic moderate-to-very-severe COPD patients, with a similar safety profile.


2016 ◽  
Vol 73 (1) ◽  
Author(s):  
A. Corrado ◽  
T. Renda ◽  
S. Bertini

Long term oxygen therapy (LTOT) has been shown to improve the survival rate in Chronic Obstructive Pulmonary Disease (COPD) patients with severe resting hypoxemia by NOTT and MRC studies, published more than 25 years ago. The improved survival was found in patients who received oxygen for more than 15 hours/day. The effectiveness of LTOT has been documented only in stable COPD patients with severe chronic hypoxemia at rest (PaO255%. In fact no evidence supports the use of LTOT in COPD patients with moderate hypoxemia (55&lt;PaO2&lt;65 mmHg), and in those with decreased oxygen saturation (SO2&lt;90%) during exercise or sleep. Furthermore, it is generally accepted without evidence that LTOT in clinical practice is warranted in other forms of chronic respiratory failure not due to COPD when arterial blood gas criteria match those established for COPD patients. The prescription of oxygen in these circumstances, as for unstable patients, increases the number of patients receiving supplemental oxygen and the related costs. Comorbidities are likely to affect both prognosis and health outcomes in COPD patients, but at the moment we do not know if LTOT in these patients with complex chronic diseases and mild-moderate hypoxemia could be of any use. For these reasons a critical revision of the actual guide lines indications for LTOT in order to optimise effectiveness and costs, and future research in the areas that have not previously been addressed by NOTT and MRC studies, are mandatory.


1985 ◽  
Vol 59 (6) ◽  
pp. 1955-1960 ◽  
Author(s):  
B. R. Walker ◽  
E. M. Adams ◽  
N. F. Voelkel

As a fossorial species the hamster differs in its natural habitat from the rat. Experiments were performed to determine possible differences between the ventilatory responses of awake hamsters and rats to acute exposure to hypoxic and hypercapnic environments. Ventilation was measured with the barometric method while the animals were conscious and unrestrained in a sealed plethysmograph. Tidal volume (VT), respiratory frequency (f), and inspiratory (TI) and expiratory (TE) time measurements were made while the animals breathed normoxic (30% O2), hypercapnic (5% CO2), or hypoxic (10% O2) gases. Arterial blood gases were also measured in both species while exposed to each of these atmospheric conditions. During inhalation of normoxic gas, the VT/100 g was greater and f was lower in the hamster than in the rat. Overall minute ventilation (VE/100 g) in the hamster was less than in the rat, which was reflected in the lower PO2 and higher PCO2 of the hamster arterial blood. When exposed to hypercapnia, the hamster increased VE/100 g solely through VT; however, the VE/100 g increase was significantly less than in the rat. In response to hypoxia, the hamster and rat increased VE/100 g by similar amounts; however, the hamster VE/100 g increase was through f alone, whereas the rat increased both VT/100 g and f. Mean airflow rates (VT/TI) were no different in the hamster or rat in each gas environment; therefore most of the ventilatory responses were the result of changes in TI and TE and respiratory duty cycle (TI/TT).


2008 ◽  
Vol 65 (7) ◽  
pp. 521-524
Author(s):  
Zorica Lazic ◽  
Ivan Cekerevac ◽  
Ljiljana Novkovic ◽  
Vojislav Cupurdija

Background/Aim. Oxygen therapy is a necessary therapeutic method in treatment of severe chronic respiratory failure (CRF), especially in phases of acute worsening. Risks which are to be taken into consideration during this therapy are: unpredictable increase of carbon dioxide in blood, carbonarcosis, respiratory acidosis and coma. The aim of this study was to show the influence of oxygen therapy on changes of arterial blood carbon dioxide partial pressure. Methods. The study included 93 patients in 104 admittances to the hospital due to acute exacerbation of CFR. The majority of the patients (89.4%) had chronic obstructive pulmonary disease (COPD), while other causes of respiratory failure were less common. The effect of oxygenation was controlled through measurement of PaO2 and PaCO2 in arterial blood samples. To analyze the influence of oxygen therapy on levels of carbon dioxide, greatest values of change of PaO2 and PaCO2 values from these measurements, including corresponding PaO2 values from the same blood analysis were taken. Results. The obtained results show that oxygen therapy led to the increase of PaO2 but also to the increase of PaCO2. The average increase of PaO2 for the whole group of patients was 2.42 kPa, and the average increase of PaCO2 was 1.69 kPa. There was no correlation between the initial values of PaO2 and PaCO2 and changes of PaCO2 during the oxygen therapy. Also, no correlation between the produced increase in PaO2 and change in PaCO2 during this therapy was found. Conclusion. Controlled oxygen therapy in patients with severe respiratory failure greatly reduces the risk of unwanted increase of PaCO2, but does not exclude it completely. The initial values of PaO2 and PaCO2 are not reliable parameters which could predict the response to oxygen therapy.


2016 ◽  
Vol 120 (2) ◽  
pp. 282-296 ◽  
Author(s):  
Michael M. Tymko ◽  
Ryan L. Hoiland ◽  
Tomas Kuca ◽  
Lindsey M. Boulet ◽  
Joshua C. Tremblay ◽  
...  

Our aim was to quantify the end-tidal-to-arterial gas gradients for O2 (PET-PaO2) and CO2 (Pa-PETCO2) during a CO2 reactivity test to determine their influence on the cerebrovascular (CVR) and ventilatory (HCVR) response in subjects with (PFO+, n = 8) and without (PFO−, n = 7) a patent foramen ovale (PFO). We hypothesized that 1) the Pa-PETCO2 would be greater in hypoxia compared with normoxia, 2) the Pa-PETCO2 would be similar, whereas the PET-PaO2 gradient would be greater in those with a PFO, 3) the HCVR and CVR would be underestimated when plotted against PETCO2 compared with PaCO2, and 4) previously derived prediction algorithms will accurately target PaCO2. PETCO2 was controlled by dynamic end-tidal forcing in steady-state steps of −8, −4, 0, +4, and +8 mmHg from baseline in normoxia and hypoxia. Minute ventilation (V̇E), internal carotid artery blood flow (Q̇ICA), middle cerebral artery blood velocity (MCAv), and temperature corrected end-tidal and arterial blood gases were measured throughout experimentation. HCVR and CVR were calculated using linear regression analysis by indexing V̇E and relative changes in Q̇ICA, and MCAv against PETCO2, predicted PaCO2, and measured PaCO2. The Pa-PETCO2 was similar between hypoxia and normoxia and PFO+ and PFO−. The PET-PaO2 was greater in PFO+ by 2.1 mmHg during normoxia ( P = 0.003). HCVR and CVR plotted against PETCO2 underestimated HCVR and CVR indexed against PaCO2 in normoxia and hypoxia. Our PaCO2 prediction equation modestly improved estimates of HCVR and CVR. In summary, care must be taken when indexing reactivity measures to PETCO2 compared with PaCO2.


2018 ◽  
Vol 4 (1) ◽  
pp. 00073-2017 ◽  
Author(s):  
John H. Riley ◽  
Chris J. Kalberg ◽  
Alison Donald ◽  
David A. Lipson ◽  
Muhammad Shoaib ◽  
...  

This multicentre, randomised, double-blind, placebo-controlled, two-period crossover study assessed the effect of umeclidinium/vilanterol (UMEC/VI) on exercise capacity in patients with chronic obstructive pulmonary disease (COPD) using the endurance shuttle walk test (ESWT).Patients were randomised 1:1 to one of two treatment sequences: 1) UMEC/VI 62.5/25 µg followed by placebo or 2) placebo followed by UMEC/VI 62.5/25 µg. Each treatment was taken once daily for 12 weeks. The primary end-point was 3-h post-dose exercise endurance time (EET) at week 12. Secondary end-points included trough forced expiratory volume in 1 s (FEV1) and 3-h post-dose functional residual capacity (FRC), both at week 12. COPD Assessment Test (CAT) score at week 12 was also assessed.UMEC/VI treatment did not result in a statistically significant improvement in EET change from baseline at week 12 versus placebo (p=0.790). However, improvements were observed in trough FEV1 (206 mL, 95% CI 167–246), 3-h post-dose FRC (−346 mL, 95% CI −487 to −204) and CAT score (−1.07 units, 95% CI −2.09 to −0.05) versus placebo at week 12.UMEC/VI did not result in improvements in EET at week 12 versus placebo, despite improvements in measures of lung function, hyperinflation and health status.


Sign in / Sign up

Export Citation Format

Share Document