ergometer exercise
Recently Published Documents


TOTAL DOCUMENTS

479
(FIVE YEARS 53)

H-INDEX

58
(FIVE YEARS 3)

2021 ◽  
Vol 11 (24) ◽  
pp. 12048
Author(s):  
Kaori Ochiai ◽  
Yuma Tamura ◽  
Masato Terashima ◽  
Tomoki Tsurumi ◽  
Takanori Yasu

Vigorous exercise increases blood viscosity and may pose a risk of cardiovascular events in patients with cardiovascular diseases. We recently reported that single-use of novel whole-body neuromuscular electrical stimulation (WB-NMES) can be safely applied in healthy subjects without adversely affecting blood fluidity. We performed a crossover study to explore the effectiveness and safety of a hybrid exercise with ergo-bicycle and WB-NMES; 15 healthy volunteers, aged 23–41 years, participated in this study. No arrhythmias were detected during the hybrid exercise and 20 min recovery, and although blood fluidity was transiently exacerbated immediately after both the exercise programs, in vivo parameters in the sublingual and nailfold microcirculation remained unchanged. There was a significant decrease in blood glucose and increase in lactic acid levels immediately after both exercise programs. Even with the same workload as the cycle ergometer exercise, the oxygen intake during the hybrid exercise remained higher than that during the cycle ergometer exercise alone (p < 0.05, r = 0.79, power = 0.81). Both the hybrid and voluntary cycle ergometer exercises transiently exacerbated blood fluidity ex vivo; however, microvascular flow was not adversely affected in vivo.


Author(s):  
Dagmara Gloc ◽  
Zbigniew Nowak ◽  
Agata Nowak-Lis ◽  
Tomasz Gabryś ◽  
Urszula Szmatlan-Gabrys ◽  
...  

Abstract Background Standard endurance training used from the second stage of cardiac rehabilitation has many common features with indoor cycling training which is used in fitness clubs. In the study, an attempt was made to evaluate the usefulness of this form of training in a 24-day rehabilitation program for patients after myocardial infarction. The study examined a group of 64 patients (51.34 ± 8.02 years) who were divided into two groups: the IC group (32 patients aged 53.40 ± 4.31 years) with indoor cycling training instead of standard endurance training; and the ST group (32 patients aged 55.31 ± 6.45 years) performing standard training. The level of exercise tolerance (cardiopulmonary exercise testing on a treadmill—Bruce’s protocol), hemodynamic indicators of the left ventricle (echocardiography) and blood lipid profile (laboratory test) were assessed. Results In the IC group there was a significant increase in the test duration (9.21 ± 2.02 vs 11.24 ± 1.26 min; p < 0.001), the MET value (9.16 ± 1.30 vs 10.73 ± 1.23; p = 0.006) and VO2max (37.27 ± 3.23 vs 39.10 ± 3.17 ml/kg/min; p < 0.001). Parallel changes were observed in the ST group, where the following parameters improved: the test duration (9.41 ± 0.39 vs 10.91 ± 2.22; p < 0.001), MET value (8.65 ± 0.25 vs 9.86 ± 1.12; p = 0.002) and VO2max (36.89 ± 6.22 vs 38.76 ± 3.44; p < 0.001). No statistically significant changes were found in the hemodynamic indices of the left ventricle and the lipid profile. Also, the intergroup analysis did not show any statistical significance. Conclusion Based on the research results, it was found that indoor cycling training in the second phase of cardiac rehabilitation is a safe form of therapy and therefore may be an interesting alternative method to the classic bicycle ergometer exercise in the stage of early cardiac rehabilitation.


2021 ◽  
Vol 8 ◽  
Author(s):  
David J. Dearlove ◽  
David Holdsworth ◽  
Tom Kirk ◽  
Leanne Hodson ◽  
Evelina Charidemou ◽  
...  

Purpose: In this study, we determined ketone oxidation rates in athletes under metabolic conditions of high and low carbohydrate (CHO) and fat availability.Methods: Six healthy male athletes completed 1 h of bicycle ergometer exercise at 75% maximal power (WMax) on three occasions. Prior to exercise, participants consumed 573 mg·kg bw−1 of a ketone ester (KE) containing a 13C label. To manipulate CHO availability, athletes undertook glycogen depleting exercise followed by isocaloric high-CHO or very-low-CHO diets. To manipulate fat availability, participants were given a continuous infusion of lipid during two visits. Using stable isotope methodology, β-hydroxybutyrate (βHB) oxidation rates were therefore investigated under the following metabolic conditions: (i) high CHO + normal fat (KE+CHO); (ii) high CHO + high fat KE+CHO+FAT); and (iii) low CHO + high fat (KE+FAT).Results: Pre-exercise intramuscular glycogen (IMGLY) was approximately halved in the KE+FAT vs. KE+CHO and KE+CHO+FAT conditions (both p &lt; 0.05). Blood free fatty acids (FFA) and intramuscular long-chain acylcarnitines were significantly greater in the KE+FAT vs. other conditions and in the KE+CHO+FAT vs. KE+CHO conditions before exercise. Following ingestion of the 13C labeled KE, blood βHB levels increased to ≈4.5 mM before exercise in all conditions. βHB oxidation was modestly greater in the KE+CHO vs. KE+FAT conditions (mean diff. = 0.09 g·min−1, p = 0.03; d = 0.3), tended to be greater in the KE+CHO+FAT vs. KE+FAT conditions (mean diff. = 0.07 g·min−1; p = 0.1; d = 0.3) and were the same in the KE+CHO vs. KE+CHO+FAT conditions (p &lt; 0.05; d &lt; 0.1). A moderate positive correlation between pre-exercise IMGLY and βHB oxidation rates during exercise was present (p = 0.04; r = 0.5). Post-exercise intramuscular βHB abundance was markedly elevated in the KE+FAT vs. KE+CHO and KE+CHO+FAT conditions (both, p &lt; 0.001; d = 2.3).Conclusion: βHB oxidation rates during exercise are modestly impaired by low CHO availability, independent of circulating βHB levels.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Robert Amelard ◽  
Eric T. Hedge ◽  
Richard L. Hughson

AbstractOxygen consumption ($$\dot{\,{{\mbox{V}}}}{{{\mbox{O}}}}_{2}$$ V ̇ O 2 ) provides established clinical and physiological indicators of cardiorespiratory function and exercise capacity. However, $$\dot{\,{{\mbox{V}}}}{{{\mbox{O}}}}_{2}$$ V ̇ O 2 monitoring is largely limited to specialized laboratory settings, making its widespread monitoring elusive. Here we investigate temporal prediction of $$\dot{\,{{\mbox{V}}}}{{{\mbox{O}}}}_{2}$$ V ̇ O 2 from wearable sensors during cycle ergometer exercise using a temporal convolutional network (TCN). Cardiorespiratory signals were acquired from a smart shirt with integrated textile sensors alongside ground-truth $$\dot{\,{{\mbox{V}}}}{{{\mbox{O}}}}_{2}$$ V ̇ O 2 from a metabolic system on 22 young healthy adults. Participants performed one ramp-incremental and three pseudorandom binary sequence exercise protocols to assess a range of $$\dot{\,{{\mbox{V}}}}{{{\mbox{O}}}}_{2}$$ V ̇ O 2 dynamics. A TCN model was developed using causal convolutions across an effective history length to model the time-dependent nature of $$\dot{\,{{\mbox{V}}}}{{{\mbox{O}}}}_{2}$$ V ̇ O 2 . Optimal history length was determined through minimum validation loss across hyperparameter values. The best performing model encoded 218 s history length (TCN-VO2 A), with 187, 97, and 76 s yielding <3% deviation from the optimal validation loss. TCN-VO2 A showed strong prediction accuracy (mean, 95% CI) across all exercise intensities (−22 ml min−1, [−262, 218]), spanning transitions from low–moderate (−23 ml min−1, [−250, 204]), low–high (14 ml min−1, [−252, 280]), ventilatory threshold–high (−49 ml min−1, [−274, 176]), and maximal (−32 ml min−1, [−261, 197]) exercise. Second-by-second classification of physical activity across 16,090 s of predicted $$\dot{\,{{\mbox{V}}}}{{{\mbox{O}}}}_{2}$$ V ̇ O 2 was able to discern between vigorous, moderate, and light activity with high accuracy (94.1%). This system enables quantitative aerobic activity monitoring in non-laboratory settings, when combined with tidal volume and heart rate reserve calibration, across a range of exercise intensities using wearable sensors for monitoring exercise prescription adherence and personal fitness.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3335
Author(s):  
Laís Monteiro Rodrigues Loureiro ◽  
Eugênio dos Santos dos Santos Neto ◽  
Guilherme Eckhardt Molina ◽  
Angélica Amorim Amato ◽  
Sandra Fernandes Arruda ◽  
...  

Coffee is one of the most widely consumed beverages worldwide and caffeine is known to improve performance in physical exercise. Some substances in coffee have a positive effect on glucose metabolism and are promising for post-exercise muscle glycogen recovery. We investigated the effect of a coffee beverage after exhaustive exercise on muscle glycogen resynthesis, glycogen synthase activity and glycemic and insulinemic response in a double-blind, crossover, randomized clinical trial. Fourteen endurance-trained men performed an exhaustive cycle ergometer exercise to deplete muscle glycogen. The following morning, participants completed a second cycling protocol followed by a 4-h recovery, during which they received either test beverage (coffee + milk) or control (milk) and a breakfast meal, with a simple randomization. Blood samples and muscle biopsies were collected at the beginning and by the end of recovery. Eleven participants were included in data analysis (age: 39.0 ± 6.0 years; BMI: 24.0 ± 2.3 kg/m2; VO2max: 59.9 ± 8.3 mL·kg−1·min−1; PPO: 346 ± 39 W). The consumption of coffee + milk resulted in greater muscle glycogen recovery (102.56 ± 18.75 vs. 40.54 ± 18.74 mmol·kg dw−1; p = 0.01; d = 0.94) and greater glucose (p = 0.02; d = 0.83) and insulin (p = 0.03; d = 0.76) total area under the curve compared with control. The addition of coffee to a beverage with adequate amounts of carbohydrates increased muscle glycogen resynthesis and the glycemic and insulinemic response during the 4-h recovery after exhaustive cycling exercise.


2021 ◽  
Author(s):  
Daichi Shima ◽  
Yoshi-ichiro Kamijo ◽  
Takamasa Hashizaki ◽  
Yuta Minoshima ◽  
Tatsuya Yoshikawa ◽  
...  

Abstract Surface electromyographic activities of the erector spinae and multifidus during graded arm- and leg-ergometer exercise were investigated. Fifteen young healthy male participants performed arm- and leg-ergometer exercises at 50W and 100W for 1 min, while monitoring the electrocardiograms of the paraspinal muscles and heart rate, and the root mean squares of the electromyograms were calculated. Time series of contractions of the paraspinal and extremity muscles during both exercises were assessed (n = 7). Both paraspinal muscle activities increased with increased workload in both exercises similarly (P < 0.01, each). Heart rate increased with increased workload, and the increase was greater for arm-ergometer exercise than for leg-ergometer exercise. Each contraction time of trunk and limb muscles suggested that the paraspinal muscles facilitated trunk rotation and prevented excessive lateral bending of the trunk, respectively. The activities of these paraspinal muscles increased with increased workload similarly in both exercises, although heart rate response was different between them.


2021 ◽  
Vol 6 (3) ◽  
pp. 61
Author(s):  
Philipp Birnbaumer ◽  
Heimo Traninger ◽  
Matteo C. Sattler ◽  
Andrea Borenich ◽  
Peter Hofmann

(1): Heart rate performance curve (HRPC) in incremental exercise was shown to be not uniform, causing false intensity estimation applying percentages of maximal heart rate (HRmax). HRPC variations are mediated by β-adrenergic receptor sensitivity. The aim was to study age and sex dependent differences in HRPC patterns in adults with β-blocker treatment (BB) and healthy controls (C). (2): A total of 535 (102 female) BB individuals were matched 1:1 for age and sex (male 59 ± 11 yrs, female 61 ± 11 yrs) in C. From the maximum incremental cycle ergometer exercise a first and second heart rate (HR) threshold (Th1 and Th2) was determined. Based on the degree of the deflection (kHR), HRPCs were categorized as regular (downward deflection (kHR > 0.1)) and non-regular (upward deflection (kHR < 0.1), linear time course). (3): Logistic regression analysis revealed a higher odds ratio to present a non-regular curve in BB compared to C (females showed three times higher odds). The odds for non-regular HRPC in BB versus C decreased with older age (OR interaction = 0.97, CI = 0.94–0.99). Maximal and submaximal performance and HR variables were significantly lower in BB (p < 0.05). %HRmax was significantly lower in BB versus C at Th2 (male: 77.2 ± 7.3% vs. 80.8 ± 5.0%; female: 79.2 ± 5.1% vs. 84.0 ± 4.3%). %Pmax at Th2 was similar in BB and C. (4): The HRPC pattern in incremental cycle ergometer exercise is different in individuals receiving β-blocker treatment compared to healthy individuals. The effects were also dependent on age and sex. Relative HR values at Th2 varied substantially depending on treatment. Thus, the percentage of Pmax seems to be a stable and independent indicator for exercise intensity prescription.


Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 851
Author(s):  
Tae Ho Kim ◽  
Joung Kyue Han ◽  
Ji Young Lee ◽  
Yong Chul Choi

This study aimed to analyze the effect of 12 weeks of polarized training on body composition, cardiorespiratory function, and upper-body power of male and female cross-country skiers during the general preparation period. A total of 16 national cross-country skiers (8 male and 8 female; 8 national cross-country skiers and 8 national biathlon athletes) participated. Polarization training was conducted for 12 weeks from May to July in 2019 during the general preparation period for cross-country skiers. The low-weight, high-repetition method was used for strength training. The effect of the polarized training on body composition, maximum oxygen intake (VO2max), respiratory exchange rate, all-out time, and ski ergometer exercise time was assessed. There was no change in weight, BMI, and muscle mass in male and female cross-country skiers following the 12 weeks of polarized training (p > 0.05). Male body fat percentage (pre 18.1%, post 12.7%) and female body fat percentage (pre 29.1%, post 21.4%) showed a significant decrease (p < 0.05). After training, VO2max increased by 7.72% in male athletes (pre 71.05 mL/kg/min, post 77.0 mL/kg/min) and 6.32% in female athletes (pre 60.26 mL/kg/min, post 64.33 mL/kg/min). Treadmill exercise time increased by 5.39% for male athletes (pre 1038 s, post 1064 s) and 2.23% for female athletes (pre 855 s, post 874 s). However, there was no significant difference between male and female athletes (p > 0.05). The 50% recovery time from the maximum heart rate to the target heart rate decreased by 64.52% in males (pre 168.8 s, post 102.6 s) and 6.48% in females (pre 135 s, post 129.6 s). Significant differences were found only in male athletes (p < 0.05). The double-pole 500 m exercise duration for the ski ergometer significantly decreased after the training for both sexes (p < 0.05). In this study, the 12 weeks of polarized training improved the body composition and athletic performance of all cross-country skiers. Interestingly, in this study, we confirmed that polarized training had a better effect on cardiorespiratory function in male cross-country skiers than in female cross-country skiers. Conversely, we found that the outcomes of the ski ergometer exercise factors were more effective in female athletes than in male athletes. Therefore, we insist that when applying a polarized training program to athletes, it should be planned in detail by sex, exercise amount, intensity, and type of training.


2021 ◽  
Vol 17 (65) ◽  
pp. 251-263
Author(s):  
Mariana de Melo Cazal ◽  
◽  
Rita de Cássia Gonçalves Alfenas ◽  
Maria do Carmo Gouveia Peluzio ◽  
Paulo Roberto dos Santos Amorim

The purpose of this study was to compare the effect of the glycaemic index of breakfast on metabolic parameters and performance of cyclists with different types of hydration (water or isotonic beverage). Twelve male recreational cyclists participated in four experimental trials where they consumed either a high glycaemic index (HGI) or low glycaemic index (LGI) meal, 30 min before exercise on a cycle ergometer. Exercise was performed at 70% maximal oxygen uptake for 90 min followed by a 6 km performance. During each trial, 3 mL.kg-1 body mass of either water or isotonic beverage was provided. The postprandial glycaemic response and areas under the blood glucose curve 30 min after ingestion were higher after the consumption of the HGI meals than that after the consumption of the LGI meals. The glycaemic response and carbohydrate oxidation during the trials with isotonic beverage consumption were higher than that in trials with water consumption during exercise (p<0.05). There was no significant difference on exercise performance among all trials (p=0.409). This study demonstrated that, despite significant metabolic changes, neither LGI nor HGI meals consumed for breakfast, 30 min before exercise on a cycle ergometer, affect subsequent cycling performance.


Sign in / Sign up

Export Citation Format

Share Document