scholarly journals Alpha-synuclein stepwise aggregation reveals features of an early onset mutation in Parkinson’s disease

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Guilherme A. P. de Oliveira ◽  
Jerson L. Silva

Abstract Amyloid formation is a process involving interconverting protein species and results in toxic oligomers and fibrils. Aggregated alpha-synuclein (αS) participates in neurodegenerative maladies, but a closer understanding of the early αS polymerization stages and polymorphism of heritable αS variants is sparse still. Here, we distinguished αS oligomer and protofibril interconversions in Thioflavin T polymerization reactions. The results support a hypothesis reconciling the nucleation-polymerization and nucleation-conversion-polymerization models to explain the dissimilar behaviors of wild-type and the A53T mutant. Cryo-electron microscopy with a direct detector shows the polymorphic nature of αS fibrils formed by heritable A30P, E46K, and A53T point mutations. By showing that A53T rapidly nucleates competent species, continuously elongates fibrils in the presence of increasing amounts of seeds, and overcomes wild-type surface requirements for growth, our findings place A53T with features that may explain the early onset of familial Parkinson’s disease cases bearing this mutation.

Biochemistry ◽  
2009 ◽  
Vol 48 (31) ◽  
pp. 7465-7472 ◽  
Author(s):  
M. Soledad Celej ◽  
Wouter Caarls ◽  
Alexander P. Demchenko ◽  
Thomas M. Jovin

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Michael Fiske ◽  
Michael White ◽  
Stephanie Valtierra ◽  
Sara Herrera ◽  
Keith Solvang ◽  
...  

In Parkinson’s disease (PD), midbrain dopaminergic neuronal death is linked to the accumulation of aggregated α-synuclein. The familial PD mutant form of α-synuclein, E46K, has not been thoroughly evaluated yet in an organismal model system. Here, we report that E46K resembled wild-type (WT) α-synuclein in Saccharomyces cerevisiae in that it predominantly localized to the plasma membrane, and it did not induce significant toxicity or accumulation. In contrast, in Schizosaccharomyces pombe, E46K did not associate with the plasma membrane. Instead, in one strain, it extensively aggregated in the cytoplasm and was as toxic as WT. Remarkably, in another strain, E46K extensively associated with the endomembrane system and was more toxic than WT. Our studies recapitulate and extend aggregation and phospholipid membrane association properties of E46K previously observed in vitro and cell culture. Furthermore, it supports the notion that E46K generates toxicity partly due to increased association with endomembrane systems within cells.


2014 ◽  
Vol 106 (2) ◽  
pp. 269a ◽  
Author(s):  
Laura Tosatto ◽  
Mathew H. Horrocks ◽  
Cremades Nunilo ◽  
Tim Guilliams ◽  
Mauro Dalla Serra ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Ricardo Guerrero-Ferreira ◽  
Nicholas MI Taylor ◽  
Daniel Mona ◽  
Philippe Ringler ◽  
Matthias E Lauer ◽  
...  

Parkinson’s disease is a progressive neuropathological disorder that belongs to the class of synucleinopathies, in which the protein alpha-synuclein is found at abnormally high concentrations in affected neurons. Its hallmark are intracellular inclusions called Lewy bodies and Lewy neurites. We here report the structure of cytotoxic alpha-synuclein fibrils (residues 1–121), determined by cryo-electron microscopy at a resolution of 3.4 Å. Two protofilaments form a polar fibril composed of staggered β-strands. The backbone of residues 38 to 95, including the fibril core and the non-amyloid component region, are well resolved in the EM map. Residues 50–57, containing three of the mutation sites associated with familial synucleinopathies, form the interface between the two protofilaments and contribute to fibril stability. A hydrophobic cleft at one end of the fibril may have implications for fibril elongation, and invites for the design of molecules for diagnosis and treatment of synucleinopathies.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Massimiliano Zanin ◽  
Bruno F. R. Santos ◽  
Paul M. A. Antony ◽  
Clara Berenguer-Escuder ◽  
Simone B. Larsen ◽  
...  

Abstract Mitochondrial dysfunction is linked to pathogenesis of Parkinson’s disease (PD). However, individual mitochondria-based analyses do not show a uniform feature in PD patients. Since mitochondria interact with each other, we hypothesize that PD-related features might exist in topological patterns of mitochondria interaction networks (MINs). Here we show that MINs formed nonclassical scale-free supernetworks in colonic ganglia both from healthy controls and PD patients; however, altered network topological patterns were observed in PD patients. These patterns were highly correlated with PD clinical scores and a machine-learning approach based on the MIN features alone accurately distinguished between patients and controls with an area-under-curve value of 0.989. The MINs of midbrain dopaminergic neurons (mDANs) derived from several genetic PD patients also displayed specific changes. CRISPR/CAS9-based genome correction of alpha-synuclein point mutations reversed the changes in MINs of mDANs. Our organelle-interaction network analysis opens another critical dimension for a deeper characterization of various complex diseases with mitochondrial dysregulation.


Sign in / Sign up

Export Citation Format

Share Document