alpha synuclein aggregation
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 42)

H-INDEX

23
(FIVE YEARS 4)

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7351
Author(s):  
Matthew Upcott ◽  
Kirill D. Chaprov ◽  
Vladimir L. Buchman

The accumulation of the various products of alpha-synuclein aggregation has been associated with the etiology and pathogenesis of several neurodegenerative conditions, including both familial and sporadic forms of Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). It is now well established that the aggregation and spread of alpha-synuclein aggregation pathology activate numerous pathogenic mechanisms that contribute to neurodegeneration and, ultimately, to disease progression. Therefore, the development of a safe and effective disease-modifying therapy that limits or prevents the accumulation of the toxic intermediate products of alpha-synuclein aggregation and the spread of alpha-synuclein aggregation pathology could provide significant positive clinical outcomes in PD/DLB cohorts. It has been suggested that this goal can be achieved by reducing the intracellular and/or extracellular levels of monomeric and already aggregated alpha-synuclein. The principal aim of this review is to critically evaluate the potential of therapeutic strategies that target the post-transcriptional steps of alpha-synuclein production and immunotherapy-based approaches to alpha-synuclein degradation in PD/DLB patients. Strategies aimed at the downregulation of alpha-synuclein production are at an early preclinical stage of drug development and, although they have shown promise in animal models of alpha-synuclein aggregation, many limitations need to be resolved before in-human clinical trials can be seriously considered. In contrast, many strategies aimed at the degradation of alpha-synuclein using immunotherapeutic approaches are at a more advanced stage of development, with some in-human Phase II clinical trials currently in progress. Translational barriers for both strategies include the limitations of alpha-synuclein aggregation models, poor understanding of the therapeutic window for the alpha-synuclein knockdown, and variability in alpha-synuclein pathology across patient cohorts. Overcoming such barriers should be the main focus of further studies. However, it is already clear that these strategies do have the potential to achieve a disease-modifying effect in PD and DLB.


2021 ◽  
pp. 1-11
Author(s):  
David I. Finkelstein ◽  
Jay J. Shukla ◽  
Robert A. Cherny ◽  
Jessica L. Billings ◽  
Eiman Saleh ◽  
...  

Background: An elevation in iron levels, together with an accumulation of α-synuclein within the oligodendrocytes, are features of the rare atypical parkinsonian disorder, Multiple System Atrophy (MSA). We have previously tested the novel compound ATH434 (formally called PBT434) in preclinical models of Parkinson’s disease and shown that it is brain-penetrant, reduces iron accumulation and iron mediated redox activity, provides neuroprotection, inhibits alpha synuclein aggregation and lowers the tissue levels of alpha synuclein. The compound was also well-tolerated in a first-in-human oral dosing study in healthy and older volunteers with a favorable, dose-dependent pharmacokinetic profile. Objective: To evaluate the efficacy of ATH434 in a mouse MSA model. Methods: The PLP-α-syn transgenic mouse overexpresses α-synuclein, demonstrates oligodendroglial pathology, and manifests motor and non-motor aspects of MSA. Animals were provided ATH434 (3, 10, or 30 mg/kg/day spiked into their food) or control food for 4 months starting at 12 months of age and were culled at 16 months. Western blot was used to assess oligomeric and urea soluble α-synuclein levels in brain homogenates, whilst stereology was used to quantitate the number of nigral neurons and glial cell inclusions (GCIs) present in the substantia nigra pars compacta. Results: ATH434 reduced oligomeric and urea soluble α-synuclein aggregation, reduced the number of GCIs, and preserved SNpc neurons. In vitro experiments suggest that ATH434 prevents the formation of toxic oligomeric species of synuclein. Conclusion: ATH434 is a promising small molecule drug candidate that has potential to move forward to trial for treating MSA.


2021 ◽  
Vol 8 ◽  
Author(s):  
E. Srinivasan ◽  
G. Chandrasekhar ◽  
P. Chandrasekar ◽  
K. Anbarasu ◽  
A. S. Vickram ◽  
...  

Parkinson's disease (PD), a neurodegenerative disorder characterized by distinct aging-independent loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) region urging toward neuronal loss. Over the decade, various key findings from clinical perspective to molecular pathogenesis have aided in understanding the genetics with assorted genes related with PD. Subsequently, several pathways have been incriminated in the pathogenesis of PD, involving mitochondrial dysfunction, protein aggregation, and misfolding. On the other hand, the sporadic form of PD cases is found with no genetic linkage, which still remain an unanswered question? The exertion in ascertaining vulnerability factors in PD considering the genetic factors are to be further dissevered in the forthcoming decades with advancement in research studies. One of the major proponents behind the prognosis of PD is the pathogenic transmutation of aberrant alpha-synuclein protein into amyloid fibrillar structures, which actuates neurodegeneration. Alpha-synuclein, transcribed by SNCA gene is a neuroprotein found predominantly in brain. It is implicated in the modulation of synaptic vesicle transport and eventual release of neurotransmitters. Due to genetic mutations and other elusive factors, the alpha-synuclein misfolds into its amyloid form. Therefore, this review aims in briefing the molecular understanding of the alpha-synuclein associated with PD.


Author(s):  
Fong LaiGuan Zoey ◽  
Mathangi Palanivel ◽  
Parasuraman Padmanabhan ◽  
Balázs Gulyás

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders that is implicated in aging populations. As numerous developed nations are experiencing progressively aging populations today, there is a heightened propensity for the occurrence of PD cases. Alpha-synuclein (α-syn) aggregation has been considered to be the pivotal mechanism leading to PD pathogenesis. Thus, early diagnostic and therapeutic strategies targeting the misfolded α-syn protein can potentially improve the prognosis of PD. With rapid advancements in nanotechnology in the last decade, effective solutions to various neurodegenerative and oncological diseases have been suggested. This review will explore the current innovations in nanotechnology that target the α-syn aggregation pathway, and reinstate the promise they hold as effective early diagnostic and therapeutic solutions to PD.


Author(s):  
A. Petese ◽  
V. Cesaroni ◽  
S. Cerri ◽  
F. Blandini

Background: Parkinson´s disease (PD) is the second most common neurodegenerative disorder, affecting 2-3% of the population over 65 years old. In addition to progressive degeneration of nigrostriatal neurons, the histopathological feature of PD is the accumulation of misfolded α-synuclein protein in abnormal cytoplasmatic inclusions, known as Lewy bodies (LBs). Recently, genome-wide association studies (GWAS) have indicated a clear association of variants within several lysosomal genes with risk for PD. Newly evolving data have been shedding light on the relationship between lysosomal dysfunction and alpha-synuclein aggregation. Defects in lysosomal enzymes could lead to the insufficient clearance of neurotoxic protein materials, possibly leading to selective degeneration of dopaminergic neurons. Specific modulation of lysosomal pathways and their components could be considered a novel opportunity for therapeutic intervention for PD. Aim: The purpose of this review is to illustrate lysosomal biology and describe the role of lysosomal dysfunction in PD pathogenesis. Finally, the most promising novel therapeutic approaches designed to modulate lysosomal activity, as a potential disease-modifying treatment for PD will be highlighted.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3353
Author(s):  
Rita Rosado-Ramos ◽  
Joana Godinho-Pereira ◽  
Daniela Marques ◽  
Inês Figueira ◽  
Tiago Fleming Outeiro ◽  
...  

Phenolic compounds are thought to be important to prevent neurodegenerative diseases (ND). Parkinson’s Disease (PD) is a neurodegenerative disorder known for its typical motor features, the deposition of α-synuclein (αsyn)-positive inclusions in the brain, and for concomitant cellular pathologies that include oxidative stress and neuroinflammation. Neuroprotective activity of fisetin, a dietary flavonoid, was evaluated against main hallmarks of PD in relevant cellular models. At physiologically relevant concentrations, fisetin protected SH-SY5Y cells against oxidative stress overtaken by tert-butyl hydroperoxide (t-BHP) and against methyl-4-phenylpyridinuim (MPP+)-induced toxicity in dopaminergic neurons, the differentiated Lund human Mesencephalic (LUHMES) cells. In this cellular model, fisetin promotes the increase of the levels of dopamine transporter. Remarkably, fisetin reduced the percentage of cells containing αsyn inclusions as well as their size and subcellular localization in a yeast model of αsyn aggregation. Overall, our data show that fisetin exerts modulatory activities toward common cellular pathologies present in PD; remarkably, it modulates αsyn aggregation, supporting the idea that diets rich in this compound may prove beneficial.


Sign in / Sign up

Export Citation Format

Share Document