scholarly journals Engineering subtilisin proteases that specifically degrade active RAS

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yingwei Chen ◽  
Eric A. Toth ◽  
Biao Ruan ◽  
Eun Jung Choi ◽  
Richard Simmerman ◽  
...  

AbstractWe describe the design, kinetic properties, and structures of engineered subtilisin proteases that degrade the active form of RAS by cleaving a conserved sequence in switch 2. RAS is a signaling protein that, when mutated, drives a third of human cancers. To generate high specificity for the RAS target sequence, the active site was modified to be dependent on a cofactor (imidazole or nitrite) and protease sub-sites were engineered to create a linkage between substrate and cofactor binding. Selective proteolysis of active RAS arises from a 2-step process wherein sub-site interactions promote productive binding of the cofactor, enabling cleavage. Proteases engineered in this way specifically cleave active RAS in vitro, deplete the level of RAS in a bacterial reporter system, and also degrade RAS in human cell culture. Although these proteases target active RAS, the underlying design principles are fundamental and will be adaptable to many target proteins.

2020 ◽  
Author(s):  
Yingwei Chen ◽  
Eric A. Toth ◽  
Biao Ruan ◽  
Eun Jung Choi ◽  
Richard Simmerman ◽  
...  

AbstractWe describe the design, kinetic properties, and structures of engineered subtilisin proteases that degrade the active form of RAS by cleaving a conserved sequence in switch 2. RAS is a signaling protein that, when mutated, drives a third of human cancers. To generate high specificity for the RAS target sequence, the active site was modified to be dependent on a cofactor (imidazole or nitrite) and protease sub-sites were engineered to create a linkage between substrate and cofactor binding. Selective proteolysis of active RAS arises from a 2-step process wherein sub-site interactions promote productive binding of the cofactor, enabling cleavage. Proteases engineered in this way specifically cleave active RAS in vitro, deplete the level of RAS in a bacterial reporter system, and also degrade RAS in human cell culture. Although these proteases target active RAS, the underlying design principles are fundamental and will be adaptable to many target proteins.


1989 ◽  
Vol 9 (7) ◽  
pp. 2828-2836 ◽  
Author(s):  
T Herget ◽  
M Burba ◽  
M Schmoll ◽  
K Zimmermann ◽  
A Starzinski-Powitz

We describe the identification and DNA-binding properties of nuclear proteins from rat L6 myoblasts which recognize an interspecies conserved 3' untranslated segment of pro alpha 1 (I) collagen cDNA. Levels of the two pro alpha 1 (I) collagen RNAs, present in L6 myoblasts, decreased drastically between 54 and 75 h after induction of myotube formation in serum-free medium. Both mRNAs contained a conserved sequence segment of 135 nucleotides (termed tame sequence) in the 3' untranslated region that had 96% homology to the human and murine pro alpha 1 (I) collagen genes. The cDNA of this tame sequence was specifically recognized by nuclear protein(s) from L6 myoblasts, as judged by gel retardation assays and DNase I footprints. The tame-binding protein(s) was able to recognize its target sequence on double-stranded DNA but bound also to the appropriate single-stranded oligonucleotide. Protein that bound to the tame sequence was undetectable in nuclear extracts of L6 myotubes that did not accumulate the two collagen mRNAs. Therefore, the activity of this nuclear protein seems to be linked to accumulation of the sequences that it recognizes in vitro. The collagen RNAs and the nuclear tame-binding proteins reappeared after a change of medium, which further suggests that the RNAs and the protein(s) are coordinately regulated.


1989 ◽  
Vol 9 (7) ◽  
pp. 2828-2836
Author(s):  
T Herget ◽  
M Burba ◽  
M Schmoll ◽  
K Zimmermann ◽  
A Starzinski-Powitz

We describe the identification and DNA-binding properties of nuclear proteins from rat L6 myoblasts which recognize an interspecies conserved 3' untranslated segment of pro alpha 1 (I) collagen cDNA. Levels of the two pro alpha 1 (I) collagen RNAs, present in L6 myoblasts, decreased drastically between 54 and 75 h after induction of myotube formation in serum-free medium. Both mRNAs contained a conserved sequence segment of 135 nucleotides (termed tame sequence) in the 3' untranslated region that had 96% homology to the human and murine pro alpha 1 (I) collagen genes. The cDNA of this tame sequence was specifically recognized by nuclear protein(s) from L6 myoblasts, as judged by gel retardation assays and DNase I footprints. The tame-binding protein(s) was able to recognize its target sequence on double-stranded DNA but bound also to the appropriate single-stranded oligonucleotide. Protein that bound to the tame sequence was undetectable in nuclear extracts of L6 myotubes that did not accumulate the two collagen mRNAs. Therefore, the activity of this nuclear protein seems to be linked to accumulation of the sequences that it recognizes in vitro. The collagen RNAs and the nuclear tame-binding proteins reappeared after a change of medium, which further suggests that the RNAs and the protein(s) are coordinately regulated.


1981 ◽  
Vol 45 (02) ◽  
pp. 110-115 ◽  
Author(s):  
György Csákó ◽  
Eva A Suba

SummaryPlatelet aggregations were studied by a turbidimetric method in citrated human platelet-rich plasmas (PRP) in vitro. Human Clq inhibited the aggregations caused by collagens derived from different tissues and species. Clq was needed by weight in comparable quantities to collagen for neutralizing the aggregating effect. The dependence of the inhibitory reaction on the preincubation of platelets with Clq and the differences in the occurrence of aggregating substances in supernatants of PRP triggered with collagen in the presence or absence of Clq, confirmed that Clq exerts its effect by preventing fixation of collagen to platelets. In addition, the high specificity of the inhibitory action of Clq for collagen-induced platelet aggregation was demonstrated by results obtained for testing a variety of aggregating agents in combination with Clq and/or collagen.Since normal concentrations of Clq in the blood are in the range of inhibitory doses of Clq for collagen-induced platelet aggregations in vitro and upon activation of complement Clq is known to dissociate from Cl, it is proposed that Clq may participate in a highly specific manner in regulating platelet reactivity to collagen in vivo.


2020 ◽  
Vol 27 (5) ◽  
pp. 400-410
Author(s):  
Valentina De Luca ◽  
Luigi Mandrich

: Enzymes are among the most studied biological molecules because better understanding enzymes structure and activity will shed more light on their biological processes and regulation; from a biotechnological point of view there are many examples of enzymes used with the aim to obtain new products and/or to make industrial processes less invasive towards the environment. Enzymes are known for their high specificity in the recognition of a substrate but considering the particular features of an increasing number of enzymes this is not completely true, in fact, many enzymes are active on different substrates: this ability is called enzyme promiscuity. Usually, promiscuous activities have significantly lower kinetic parameters than to that of primary activity, but they have a crucial role in gene evolution. It is accepted that gene duplication followed by sequence divergence is considered a key evolutionary mechanism to generate new enzyme functions. In this way, promiscuous activities are the starting point to increase a secondary activity in the main activity and then get a new enzyme. The primary activity can be lost or reduced to a promiscuous activity. In this review we describe the differences between substrate and enzyme promiscuity, and its rule in gene evolution. From a practical point of view the knowledge of promiscuity can facilitate the in vitro progress of proteins engineering, both for biomedical and industrial applications. In particular, we report cases regarding esterases, phosphotriesterases and cytochrome P450.


2020 ◽  
Vol 20 (10) ◽  
pp. 831-840
Author(s):  
Weibin Li

Sepsis is still a severe health problem worldwide with high morbidity and mortality. Blood bacterial culture remains the gold standard for the detection of pathogenic bacteria in bloodstream infections, but it is time-consuming, and both the sophisticated equipment and well-trained personnel are required. Immunoassays and genetic diagnosis are expensive and limited to specificity and sensitivity. Aptamers are single-stranded deoxyribonucleic acid (ssDNA) and ribonucleic acid (RNA) oligonucleotide or peptide sequence generated in vitro based on the binding affinity of aptamer-target by a process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX). By taking several advantages over monoclonal antibodies and other conventional small-molecule therapeutics, such as high specificity and affinity, negligible batch-to-batch variation, flexible modification and production, thermal stability, low immunogenicity and lack of toxicity, aptamers are presently becoming promising novel diagnostic and therapeutic agents. This review describes the prospective application of aptamerbased laboratory diagnostic assays and therapeutics for pathogenic bacteria and toxins in bloodstream infections.


2020 ◽  
Vol 189 ◽  
pp. 110040 ◽  
Author(s):  
Patricia Azevedo ◽  
Nicole Pavan Butolo ◽  
Luciano Delmondes de Alencar ◽  
Hellen Maria Soares-Lima ◽  
Victor Ribeiro Sales ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 932
Author(s):  
Arkadiusz Matuszewski ◽  
Monika Łukasiewicz ◽  
Jan Niemiec ◽  
Maciej Kamaszewski ◽  
Sławomir Jaworski ◽  
...  

The use of intensive selection procedure in modern broiler chicken lines has led to the development of several skeletal disorders in broiler chickens. Therefore, current research is focused on methods to improve the bone quality in birds. In ovo technology, using nanoparticles with a high specificity to bones, is a potential approach. The present study aimed to evaluate the effect of in ovo inoculation (IOI) of calcium carbonate nanoparticles (CCN) on chicken embryo development, health status, bone characteristics, and on broiler production results and bone quality. After assessing in vitro cell viability, the IOI procedure was performed with an injection of 500 μg/mL CCN. The control group was not inoculated with CCN. Hatchability, weight, and selected bone and serum parameters were measured in embryos. Part of hatchlings were reared under standard conditions until 42 days, and production results, meat quality, and bone quality of broilers were determined. CCN did not show cytotoxicity to cells and chicken embryo and positively influenced bone parameters of the embryos and of broilers later (calcification) without negatively affecting the production results. Thus, the IOI of CCN could modify the molecular responses at the stage of embryogenesis, resulting in better mineralization, and could provide a sustained effect, thereby improving bone quality in adult birds.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sonya Middleton ◽  
Sabine Steinbach ◽  
Michael Coad ◽  
Kevina McGill ◽  
Colm Brady ◽  
...  

AbstractTuberculin Purified Protein Derivatives (PPDs) exhibit multiple limitations: they are crude extracts from mycobacterial cultures with largely unknown active components; their production depends on culture of mycobacteria requiring expensive BCL3 production facilities; and their potency depends on the technically demanding guinea pig assay. To overcome these limitations, we developed a molecularly defined tuberculin (MDT) by adding further antigens to our prototype reagent composed of ESAT-6, CFP-10 and Rv3615c (DIVA skin test, DST). In vitro screening using PBMC from infected and uninfected cattle shortlisted four antigens from a literature-based list of 18 to formulate the MDT. These four antigens plus the previously identified Rv3020c protein, produced as recombinant proteins or overlapping synthetic peptides, were formulated together with the three DST antigens into the MDT to test cattle experimentally and naturally infected with M. bovis, uninfected cattle and MAP vaccinated calves. We demonstrated significant increases in MDT-induced skin responses compared to DST in infected animals, whilst maintaining high specificity in unvaccinated or MAP vaccinated calves. Further, MDT can also be applied in in vitro blood-based interferon-gamma release assays. Thus, MDT promises to be a robust diagnostic skin and blood test reagent overcoming some of the limitations of PPDs and warrants full validation.


Sign in / Sign up

Export Citation Format

Share Document