cofactor binding
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 66)

H-INDEX

39
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Amanat Ali ◽  
Soja Saghar Soman ◽  
Ranjit Vijayan

AbstractHemoglobin is one of the most widely studied proteins genetically, biochemically, and structurally. It is an oxygen carrying tetrameric protein that imparts the characteristic red color to blood. Each chain of hemoglobin harbors a heme group embedded in a hydrophobic pocket. Several studies have investigated structural variations present in mammalian hemoglobin and their functional implications. However, camel hemoglobin has not been thoroughly explored, especially from a structural perspective. Importantly, very little is known about how the heme group interacts with hemoglobin under varying conditions of osmolarity and temperature. Several experimental studies have indicated that the tense (T) state is more stable than the relaxed (R) state of hemoglobin under normal physiological conditions. Despite the fact that R state is less stable than the T state, no extensive structural dynamics studies have been performed to investigate global quaternary transitions of R state hemoglobin under normal physiological conditions. To evaluate this, several 500 ns all-atom molecular dynamics simulations were performed to get a deeper understanding of how camel hemoglobin behaves under stress, which it is normally exposed to, when compared to human hemoglobin. Notably, camel hemoglobin was more stable under physiological stress when compared to human hemoglobin. Additionally, when compared to camel hemoglobin, cofactor-binding regions of hemoglobin also exhibited more fluctuations in human hemoglobin under the conditions studied. Several differences were observed between the residues of camel and human hemoglobin that interacted with heme. Importantly, distal residues His58 of α hemoglobin and His63 of β hemoglobin formed more sustained interactions, especially at higher temperatures, in camel hemoglobin. These residues are important for oxygen binding to hemoglobin. Thus, this work provides insights into how camel and human hemoglobin differ in their interactions under stress.


Author(s):  
Jaysón Davidson ◽  
Kyndall Nicholas ◽  
Jeremy Young ◽  
Deborah G. Conrady ◽  
Stephen Mayclin ◽  
...  

Paraburkholderia xenovorans degrades organic wastes, including polychlorinated biphenyls. The atomic structure of a putative dehydrogenase/reductase (SDR) from P. xenovorans (PxSDR) was determined in space group P21 at a resolution of 1.45 Å. PxSDR shares less than 37% sequence identity with any known structure and assembles as a prototypical SDR tetramer. As expected, there is some conformational flexibility and difference in the substrate-binding cavity, which explains the substrate specificity. Uniquely, the cofactor-binding cavity of PxSDR is not well conserved and differs from those of other SDRs. PxSDR has an additional seven amino acids that form an additional unique loop within the cofactor-binding cavity. Further studies are required to determine how these differences affect the enzymatic functions of the SDR.


2021 ◽  
Vol 15 (1) ◽  
pp. 26
Author(s):  
Yun Shi ◽  
Ibrahim M. El-Deeb ◽  
Veronika Masic ◽  
Lauren Hartley-Tassell ◽  
Andrea Maggioni ◽  
...  

Fibrillarin (FBL) is an essential and evolutionarily highly conserved S-adenosyl methionine (SAM) dependent methyltransferase. It is the catalytic component of a multiprotein complex that facilitates 2′-O-methylation of ribosomal RNAs (rRNAs), a modification essential for accurate and efficient protein synthesis in eukaryotic cells. It was recently established that human FBL (hFBL) is critical for Nipah, Hendra, and respiratory syncytial virus infections. In addition, overexpression of hFBL contributes towards tumorgenesis and is associated with poor survival in patients with breast cancer, suggesting that hFBL is a potential target for the development of both antiviral and anticancer drugs. An attractive strategy to target cofactor-dependent enzymes is the selective inhibition of cofactor binding, which has been successful for the development of inhibitors against several protein methyltransferases including PRMT5, DOT1L, and EZH2. In this work, we solved crystal structures of the methyltransferase domain of hFBL in apo form and in complex with the cofactor SAM. Screening of a fluorinated fragment library, via X-ray crystallography and 19F NMR spectroscopy, yielded seven hit compounds that competed with cofactor binding, two of which resulted in co-crystal structures. One of these structures revealed unexpected conformational variability in the cofactor binding site, which allows it to accommodate a compound significantly different from SAM. Our structural data provide critical information for the design of selective cofactor competitive inhibitors targeting hFBL, and preliminary elaboration of hit compounds has led to additional cofactor site binders.


2021 ◽  
Author(s):  
Gaya Yadav ◽  
Wei Zhou ◽  
Xiaozhi Yang ◽  
Chenglong Li ◽  
Qiu-Xing Jiang

Abstract The potential of using cryo-electron microscopic (cryo-EM) structures of 2.5-4.0 Å resolutions for structure-based drug design was proposed recently, but is yet to be materialized. Here we show that a 3.1 Å cryo-EM structure of protein arginine methyltransferase 5 (PRMT5) is sufficient to guide the selection of computed poses of a bound inhibitor and its redesign for much higher potency. PRMT5 is an oncogenic target and its multiple inhibitors are in clinical trials for various cancer types. However, all these PRMT5 inhibitors manifest negative cooperativity with a metabolic co-factor analog --- 2-methylthioadenosine (MTA), which is accumulated substantially in cancer patients carrying defective MTA phosphorylase (MTAP). To achieve MTA-synergetic inhibition, we obtained a pharmacophore from virtual screen and synthesized a specific inhibitor (11-2F). Cryo-EM structures of the 11-2F/MTA-bound human PRMT5: MEP50 complex and its apo form together showed that the inhibitor binding in the catalytic pocket causes a shift of the cofactor-binding site by 1.5 – 2.0 Å, disfavoring cofactor-binding and resulting in positive cooperativity between 11-2F and MTA. Coarse-grained and full-atomistic MD simulations of the ligands in their binding pockets were performed to compare computed poses of 11-2F and its redesigned analogs. Three new analogs were predicted to have much better potency. One of them, after synthesis, was ~4 fold more efficient in PRMT5 inhibition in the presence of MTA than 11-2F itself. Computational analysis also suggests strong subtype specificity of 11-2F among PRMTs. These data demonstrate the feasibility of using cryo-EM structures of near-atomic resolutions and computational analysis of ligand poses for better small molecule therapeutics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Phattaraporn Morris ◽  
Ribia García-Arrazola ◽  
Leonardo Rios-Solis ◽  
Paul A. Dalby

AbstractTransketolase (TK) has been previously engineered, using semi-rational directed evolution and substrate walking, to accept increasingly aliphatic, cyclic, and then aromatic substrates. This has ultimately led to the poor water solubility of new substrates, as a potential bottleneck to further exploitation of this enzyme in biocatalysis. Here we used a range of biophysical studies to characterise the response of both E. coli apo- and holo-TK activity and structure to a range of polar organic co-solvents: acetonitrile (AcCN), n-butanol (nBuOH), ethyl acetate (EtOAc), isopropanol (iPrOH), and tetrahydrofuran (THF). The mechanism of enzyme deactivation was found to be predominantly via solvent-induced local unfolding. Holo-TK is thermodynamically more stable than apo-TK and yet for four of the five co-solvents it retained less activity than apo-TK after exposure to organic solvents, indicating that solvent tolerance was not simply correlated to global conformational stability. The co-solvent concentrations required for complete enzyme inactivation was inversely proportional to co-solvent log(P), while the unfolding rate was directly proportional, indicating that the solvents interact with and partially unfold the enzyme through hydrophobic contacts. Small amounts of aggregate formed in some cases, but this was not sufficient to explain the enzyme inactivation. TK was found to be tolerant to 15% (v/v) iPrOH, 10% (v/v) AcCN, or 6% (v/v) nBuOH over 3 h. This work indicates that future attempts to engineer the enzyme to better tolerate co-solvents should focus on increasing the stability of the protein to local unfolding, particularly in and around the cofactor-binding loops.


2021 ◽  
Author(s):  
Roberto Marotta ◽  
Alessandra Del Giudice ◽  
Gurrieri Libero ◽  
Silvia Fanti ◽  
Paolo Swec ◽  
...  

Oxygenic phototrophs perform carbon fixation through the Calvin–Benson cycle. Different mechanisms adjust the cycle and the light–harvesting reactions to rapid environmental changes. Photosynthetic glyceraldehyde–3–phosphate dehydrogenase (GAPDH) is a key enzyme of the cycle. In land plants, different photosynthetic GAPDHs exist: the most abundant formed by hetero-tetramers of A and B–subunits, and the homotetramer A4. Regardless of the subunit composition, GAPDH is the major consumer of photosynthetic NADPH and for this reason is strictly regulated. While A4–GAPDH is regulated by CP12, AB–GAPDH is autonomously regulated through the C-terminal extension (CTE) of B–subunits. Reversible inactivation of AB–GAPDH occurs via oxidation of a cysteine pair located in the CTE, and substitution of NADP(H) with NAD(H) in the cofactor binding domain. These combined conditions lead to a change in the oligomerization state and enzyme inactivation. SEC–SAXS and single–particle cryoEM analysis disclosed the structural basis of this regulatory mechanism. Both approaches revealed that (A2B2)n–GAPDH oligomers with n=1, 2, 4 and 5 co–exist in a dynamic system. B–subunits mediate the contacts between adjacent A2B2 tetramers in A4B4 and A8B8 oligomers. The CTE of each B–subunit penetrates into the active site of a B–subunit of the adjacent tetramer, while the CTE of this subunit moves in the opposite direction, effectively preventing the binding of the substrate 1,3–bisphosphoglycerate in the B–subunits. The whole mechanism is made possible, and eventually controlled, by pyridine nucleotides. In fact, NAD(H) by removing NADP(H) from A–subunits allows the entrance of the CTE in B–subunits active sites and hence inactive oligomer stabilization.


Author(s):  
Alexander Tobias Kaczmarek ◽  
Daniel Bender ◽  
Titus Gehling ◽  
Joshua Benedict Kohl ◽  
Hülya‐Sevcan Daimagüler ◽  
...  

2021 ◽  
Vol 478 (19) ◽  
pp. 3597-3611
Author(s):  
Mark K. Adams ◽  
Olga V. Belyaeva ◽  
Lizhi Wu ◽  
Ivis F. Chaple ◽  
Katelyn Dunigan-Russell ◽  
...  

The hetero-oligomeric retinoid oxidoreductase complex (ROC) catalyzes the interconversion of all-trans-retinol and all-trans-retinaldehyde to maintain the steady-state output of retinaldehyde, the precursor of all-trans-retinoic acid that regulates the transcription of numerous genes. The interconversion is catalyzed by two distinct components of the ROC: the NAD(H)-dependent retinol dehydrogenase 10 (RDH10) and the NADP(H)-dependent dehydrogenase reductase 3 (DHRS3). The binding between RDH10 and DHRS3 subunits in the ROC results in mutual activation of the subunits. The molecular basis for their activation is currently unknown. Here, we applied site-directed mutagenesis to investigate the roles of amino acid residues previously implied in subunit interactions in other SDRs to obtain the first insight into the subunit interactions in the ROC. The results of these studies suggest that the cofactor binding to RDH10 subunit is critical for the activation of DHRS3 subunit and vice versa. The C-terminal residues 317–331 of RDH10 are critical for the activity of RDH10 homo-oligomers but not for the binding to DHRS3. The C-terminal residues 291–295 are required for DHRS3 subunit activity of the ROC. The highly conserved C-terminal cysteines appear to be involved in inter-subunit communications, affecting the affinity of the cofactor binding site in RDH10 homo-oligomers as well as in the ROC. Modeling of the ROC quaternary structure based on other known structures of SDRs suggests that its integral membrane-associated subunits may be inserted in adjacent membranes of the endoplasmic reticulum (ER), making the formation and function of the ROC dependent on the dynamic nature of the tubular ER network.


2021 ◽  
Author(s):  
Juncheng Wang ◽  
Sandra Catania ◽  
Chongyuan Wang ◽  
M. Jason de la Cruz ◽  
Beiduo Rao ◽  
...  

Epigenetic evolution occurs over million-year timescales in Cryptococcus neoformans and is mediated by DNMT5, the first maintenance-type cytosine methyltransferase identified in the fungal or protist kingdoms. DNMT5 requires ATP and displays exquisite hemimethyl-DNA specificity. To understand these novel properties, we solved cryo-EM structures of CnDNMT5 in three states. These studies reveal an elaborate allosteric cascade in which hemimethylated DNA first activates the SNF2 ATPase domain by a large rigid body rotation while the target cytosine partially flips out the DNA duplex. ATP binding then triggers a striking structural reconfiguration of the methyltransferase catalytic pocket that enables cofactor binding, completion of base-flipping, and catalysis. Unmethylated DNA binding fails to open cofactor pocket and subsequent ATP binding triggers its ejection to ensure fidelity. This chaperone-like, enzyme-remodeling role of the SNF2 domain illuminates how energy can be used to enable faithful epigenetic memory.


2021 ◽  
Author(s):  
Ellen K. Gagliani ◽  
Lisa M. Gutzwiller ◽  
Yi Kuang ◽  
Yoshinobu Odaka ◽  
Phillipp Hoffmeister ◽  
...  

ABSTRACTNotch signaling is a conserved pathway that converts extracellular receptor-ligand interactions into changes in gene expression via a single transcription factor (CBF1/RBPJ in mammals; Su(H) in Drosophila). In humans, RBPJ variants have been linked to Adams-Oliver syndrome (AOS), a rare autosomal dominant disorder characterized by scalp, cranium, and limb defects. Here, we found that a previously described Drosophila Su(H) allele encodes a missense mutation that alters an analogous residue found in an AOS-associated RBPJ variant. Importantly, genetic studies support a model that Drosophila with a single copy of the AOS-like Su(H) allele behave in an opposing manner as flies with a Su(H) null allele due to a dominant activity of sequestering either the Notch co-activator or the antagonistic Hairless co-repressor. Consistent with this model, AOS-like Su(H) and Rbpj variants decrease DNA binding activity compared to wild type proteins, but these variants do not significantly alter protein binding to the Notch co-activator or the fly and mammalian co-repressors, respectively. Taken together, these data suggest a cofactor sequestration mechanism underlies AOS phenotypes associated with RBPJ variants, whereby a single RBPJ allele encodes a protein with compromised DNA binding activity that retains cofactor binding, resulting in Notch target gene dysregulation.


Sign in / Sign up

Export Citation Format

Share Document