Rational design of new inorganic compounds with the ZrSiCuAs structure type using 2D building blocks

2005 ◽  
Vol 15 (34) ◽  
pp. 3525 ◽  
Author(s):  
Houria Kabbour ◽  
Laurent Cario ◽  
Florent Boucher
2021 ◽  
Vol 7 (23) ◽  
pp. eabf9402
Author(s):  
Katherine C. Elbert ◽  
William Zygmunt ◽  
Thi Vo ◽  
Corbin M. Vara ◽  
Daniel J. Rosen ◽  
...  

The use of nanocrystal (NC) building blocks to create metamaterials is a powerful approach to access emergent materials. Given the immense library of materials choices, progress in this area for anisotropic NCs is limited by the lack of co-assembly design principles. Here, we use a rational design approach to guide the co-assembly of two such anisotropic systems. We modulate the removal of geometrical incompatibilities between NCs by tuning the ligand shell, taking advantage of the lock-and-key motifs between emergent shapes of the ligand coating to subvert phase separation. Using a combination of theory, simulation, and experiments, we use our strategy to achieve co-assembly of a binary system of cubes and triangular plates and a secondary system involving two two-dimensional (2D) nanoplates. This theory-guided approach to NC assembly has the potential to direct materials choices for targeted binary co-assembly.


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 219
Author(s):  
Victor Yakovenchuk ◽  
Yakov Pakhomovsky ◽  
Taras Panikorovskii ◽  
Andrey Zolotarev ◽  
Julia Mikhailova ◽  
...  

Chirvinskyite, (Na,Ca)13(Fe,Mn,□)2(Ti,Nb)2(Zr,Ti)3(Si2O7)4(OH,O,F)12, is a new wöhlerite–related zirconotitano–sorosilicate. It is triclinic, P1, a = 7.0477(5), b = 9.8725(5), c = 12.2204(9) Å, α = 77.995(5), β = 82.057(6), γ = 89.988(5)°, V = 823.35(9) Å3, Z = 1. The mineral was found in albitized alkaline pegmatites in a foyaite of the Mt. Takhtarvumchorr (Khibiny alkaline massif, Kola Peninsula, Russia, N 67°40’, E 33°33’). Chirvinskyite forms sheaf–like and radiated aggregates (up to 6 mm in diameter) of split fibrous crystals hosted by saccharoidal fluorapatite and albite. The mineral is pale cream in color, with a silky luster and a white streak. The cleavage is not recognized. Mohs hardness is 5. Chirvinskyite is biaxial (–), α 1.670(2), β 1.690(2), γ 1.705(2) (589 nm), 2Vcalc = 80.9°. The calculated and measured densities are 3.41 and 3.07(2) g·cm−3, respectively. The empirical formula based on Si = 8 apfu is (Na9.81Ca3.28K0.01)∑13.10(Fe0.72Mn0.69□0.54Mg0.05)∑2.00 (Ti1.81Nb0.19)∑2.00(Zr2.27Ti0.63)∑2.90(Si2O7)4{(OH)5.94O3.09F2.97}∑12.00. Chirvinskyite belongs to a new structure type of minerals and inorganic compounds and is related to the wöhlerite-group minerals. Its modular “wallpaper” structure consists of disilicate groups Si2O7 and three types of “octahedral walls”. The mineral is named in honor of Petr Nikolaevich Chirvinsky (1880–1955), Russian geologist and petrographer, head of the Petrography Department of the Perm’ State University (1943–1953), for his contributions to mineralogy and petrology, including studies of the Khibiny alkaline massif.


Science ◽  
2021 ◽  
pp. eabd3230
Author(s):  
Kenji Yasuda ◽  
Xirui Wang ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
Pablo Jarillo-Herrero

2D ferroelectrics with robust polarization down to atomic thicknesses provide building blocks for functional heterostructures. Experimental realization remains challenging because of the requirement of a layered polar crystal. Here, we demonstrate a rational design approach to engineering 2D ferroelectrics from a non-ferroelectric parent compound via employing van der Waals assembly. Parallel-stacked bilayer boron nitride exhibits out-of-plane electric polarization that reverses depending on the stacking order. The polarization switching is probed via the resistance of an adjacently stacked graphene sheet. Twisting the boron nitride sheets by a small angle changes the dynamics of switching thanks to the formation of moiré ferroelectricity with staggered polarization. The ferroelectricity persists to room temperature while keeping the high mobility of graphene, paving the way for potential ultrathin nonvolatile memory applications.


Synthesis ◽  
2021 ◽  
Author(s):  
Christian V. Stevens ◽  
Jonas Everaert ◽  
Maarten Debruyne ◽  
Flore Vanden Bussche ◽  
Kristof Van Hecke ◽  
...  

AbstractCovalent triazine frameworks (CTFs) based on polydentate ligands are highly promising supports to anchor catalytic metal complexes. The modular nature of CTFs allows to tailor the composition, structure, and function to its specific application. Access to a broad range of chelating building blocks is therefore essential. In this respect, we extended the current available set of CTF building blocks with new nitrile-functionalized N-heterocyclic ligands. This paper presents the synthesis of the six ligands which vary in the extent of the aromatic system and the denticity. The new building blocks may help in a rational design of enhanced support materials in catalysis.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Guiyang Yu ◽  
Jun Qian ◽  
Peng Zhang ◽  
Bo Zhang ◽  
Wenxiang Zhang ◽  
...  

Abstract Localized surface plasmon resonance (LSPR) offers a valuable opportunity to improve the efficiency of photocatalysts. However, plasmonic enhancement of photoconversion is still limited, as most of metal-semiconductor building blocks depend on LSPR contribution of isolated metal nanoparticles. In this contribution, the concept of collective excitation of embedded metal nanoparticles is demonstrated as an effective strategy to enhance the utilization of plasmonic energy. The contribution of Au-nanochain to the enhancement of photoconversion is 3.5 times increase in comparison with that of conventional isolated Au nanoparticles. Experimental characterization and theoretical simulation show that strongly coupled plasmonic nanostructure of Au-nanochain give rise to highly intensive electromagnetic field. The enhanced strength of electromagnetic field essentially boosts the formation rate of electron-hole pair in semiconductor, and ultimately improves photocatalytic hydrogen evolution activity of semiconductor photocatalysts. The concept of embedded coupled-metal nanostructure represents a promising strategy for the rational design of high-performance photocatalysts.


2020 ◽  
Vol 13 (11) ◽  
pp. 338
Author(s):  
Joanna Bojarska ◽  
Milan Remko ◽  
Martin Breza ◽  
Izabela Madura ◽  
Andrzej Fruziński ◽  
...  

Proline is a unique, endogenous amino acid, prevalent in proteins and essential for living organisms. It is appreciated as a tecton for the rational design of new bio-active substances. Herein, we present a short overview of the subject. We analyzed 2366 proline-derived structures deposited in the Cambridge Structure Database, with emphasis on the angiotensin-converting enzyme inhibitors. The latter are the first-line antihypertensive and cardiological drugs. Their side effects prompt a search for improved pharmaceuticals. Characterization of tectons (molecular building blocks) and the resulting supramolecular synthons (patterns of intermolecular interactions) involving proline derivatives, as presented in this study, may be useful for in silico molecular docking and macromolecular modeling studies. The DFT, Hirshfeld surface and energy framework methods gave considerable insight into the nature of close inter-contacts and supramolecular topology. Substituents of proline entity are important for the formation and cooperation of synthons. Tectonic subunits contain proline moieties characterized by diverse ionization states: -N and -COOH(-COO−), -N+ and -COOH(-COO−), -NH and -COOH(-COO−), -NH+ and -COOH(-COO−), and -NH2+ and -COOH(-COO−). Furthermore, pharmacological profiles of ACE inhibitors and their impurities were determined via an in silico approach. The above data were used to develop comprehensive classification, which may be useful in further drug design studies.


Nanoscale ◽  
2021 ◽  
Author(s):  
Antonios Raptakis ◽  
Arezoo Dianat ◽  
Alexander Croy ◽  
Gianaurelio Cuniberti

This computational study establishes a correlation between the elastic properties of COFs and their building-blocks towards the rational design of new materials with tailored properties.


2003 ◽  
Vol 9 (3) ◽  
pp. 269-316 ◽  
Author(s):  
Steen Rasmussen ◽  
Liaohai Chen ◽  
Martin Nilsson ◽  
Shigeaki Abe

Assembling non-biological materials (geomaterials) into a proto-organism constitutes a bridge between nonliving and living matter. In this article we present a simple step-by-step route to assemble a proto-organism. Many pictures have been proposed to describe this transition within the origins-of-life and artificial life communities, and more recently alternative pictures have been emerging from advances in nanoscience and biotechnology. The proposed proto-organism lends itself to both traditions and defines a new picture based on a simple idea: Given a set of required functionalities, minimize the physicochemical structures that support these functionalities, and make sure that all structures self-assemble and mutually enhance each other's existence. The result is the first concrete, rational design of a simple physicochemical system that integrates the key functionalities in a thermodynamically favorable manner as a lipid aggregate integrates proto-genes and a proto-metabolism. Under external pumping of free energy, the metabolic processes produce the required building blocks, and only specific gene sequences enhance the metabolic kinetics sufficiently for the whole system to survive. We propose an experimental implementation of the proto-organism with a discussion of our experimental results, together with relevant results produced by other experimental groups, and we specify what is still missing experimentally. Identifying the missing steps is just as important as providing the road map for the transition. We derive the kinetic and thermodynamic conditions of each of the proto-organism subsystems together with relevant theoretical and computational results about these subsystems. We present and discuss detailed 3D simulations of the lipid aggregation processes. From the reaction kinetics we derive analytical aggregate size distributions, and derive key properties of the metabolic efficiency and stability. Thermodynamics and kinetics of the ligation directed self-replication of the proto-genes is discussed, and we summarize the full life cycle of the proto-organism by comparing size, replication time, and energy with the biomass efficiency of contemporary unicells. Finally, we also compare our proto-organism picture with existing origins-of-life and protocell pictures. By assembling one possible bridge between nonliving and living matter we hope to provide a piece in the ancient puzzle about who we are and where we come from.


2019 ◽  
Vol 72 (10) ◽  
pp. 731 ◽  
Author(s):  
Feng Li ◽  
Leonard F. Lindoy

The use of metalloligands as building blocks for the assembly of metallo-organic cages has received increasing attention over the past two decades or so. In part, the popularity of this approach reflects its stepwise nature that lends itself to the predesigned construction of metallocages and especially heteronuclear metallocages. The focus of the present discussion is on the use of metalloligands for the construction of discrete polyhedral cages, very often incorporating heterometal ions as structural elements. The metalloligand approach uses metal-bound multifunctional ligand building blocks that display predesigned structural properties for coordination to a second metal ion such that the rational design and construction of both homo- and heteronuclear metal–organic cages are facilitated. The present review covers published literature in the area from early 2015 to early 2019.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao Liu ◽  
Qiang Sun ◽  
Lina Lin ◽  
Jing Wang ◽  
Chaoqi Zhang ◽  
...  

Abstract Assembly of different metal-organic framework (MOF) building blocks into hybrid MOF-on-MOF heterostructures is promising in chemistry and materials science, however the development of ternary MOF-on-MOF heterostructures with controllable architectural and compositional complexity is challenging. Here we report the synthesis of three types of ternary MOF-on-MOF heterostructures via a multiple selective assembly strategy. This strategy relies on the choice of one host MOF with more than one facet that can arrange the growth of a guest MOF, where the arrangement is site-selective without homogenous growth of guest MOF or homogenous coating of guest on host MOF. The growth of guest MOF on a selected site of host MOF in each step provides the opportunity to further vary the combinations of arrangements in multiple steps, leading to ternary MOF-on-MOF heterostructures with tunable complexity. The developed strategy paves the way towards the rational design of intricate and unprecedented MOF-based superstructures for various applications.


Sign in / Sign up

Export Citation Format

Share Document