building block
Recently Published Documents


TOTAL DOCUMENTS

5735
(FIVE YEARS 1071)

H-INDEX

109
(FIVE YEARS 17)

2022 ◽  
Vol 15 (2) ◽  
pp. 1-35
Author(s):  
Atakan Doğan ◽  
Kemal Ebcioğlu

Hardware-accelerated cloud computing systems based on FPGA chips (FPGA cloud) or ASIC chips (ASIC cloud) have emerged as a new technology trend for power-efficient acceleration of various software applications. However, the operating systems and hypervisors currently used in cloud computing will lead to power, performance, and scalability problems in an exascale cloud computing environment. Consequently, the present study proposes a parallel hardware hypervisor system that is implemented entirely in special-purpose hardware, and that virtualizes application-specific multi-chip supercomputers, to enable virtual supercomputers to share available FPGA and ASIC resources in a cloud system. In addition to the virtualization of multi-chip supercomputers, the system’s other unique features include simultaneous migration of multiple communicating hardware tasks, and on-demand increase or decrease of hardware resources allocated to a virtual supercomputer. Partitioning the flat hardware design of the proposed hypervisor system into multiple partitions and applying the chip unioning technique to its partitions, the present study introduces a cloud building block chip that can be used to create FPGA or ASIC clouds as well. Single-chip and multi-chip verification studies have been done to verify the functional correctness of the hypervisor system, which consumes only a fraction of (10%) hardware resources.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Kfir Sulimany ◽  
Yaron Bromberg

AbstractPhotons occupying multiple spatial modes hold a great promise for implementing high-dimensional quantum communication. We use spontaneous four-wave mixing to generate multimode photon pairs in a few-mode fiber. We show the photons are correlated in the fiber mode basis using an all-fiber mode sorter. Our demonstration offers an essential building block for realizing high-dimensional quantum protocols based on standard, commercially available fibers, in an all-fiber configuration.


Synthesis ◽  
2022 ◽  
Author(s):  
Dishu Zeng ◽  
Tianbao Yang ◽  
Niu Tang ◽  
Wei Deng ◽  
Jiannan Xiang ◽  
...  

A simple, mild, green and efficient method for the synthesis of 2-aminobenzamides was highly desired in organic synthesis. Herein, we developed an efficient, one-pot strategy for the synthesis of 2-aminobenzamides with high yields irradiated by UV light. 32 examples proceeded successfully by this photo-induced protocol. The yield reached up to 92%. The gram scale was also achieved easily. This building block could be applied in the preparation of quinazolinones derivatives. Amino acid derivatives could be employed smoothly at room temperature. Finally, a plausible mechanism was proposed.


Author(s):  
Eric Alston ◽  
Wilson Law ◽  
Ilia Murtazashvili ◽  
Martin Weiss

Abstract Institutional economists have analyzed permissionless blockchains as a novel institutional building block for voluntary economic exchange and distributed governance, with their unique protocol features such as automated contract execution, high levels of network and process transparency, and uniquely distributed governance. But such institutional analysis needs to be complemented by polycentric analysis of how blockchains change. We characterize such change as resulting from internal sources and external sources. Internal sources include constitutional (protocol) design and collective-choice processes for updating protocols, which help coordinate network participants and users. External sources include competitive pressure from other cryptocurrency networks. By studying two leading networks, Bitcoin and Ethereum, we illustrate how conceptualizing blockchains as competing and constitutional polycentric enterprises clarifies their processes of change.


2022 ◽  
Author(s):  
Hosoowi Lee ◽  
Jun Ho Hwang ◽  
Dajung Lee ◽  
Inhye Kim ◽  
Eunji Lee ◽  
...  

Abstract Reversible supramolecular polymerisation and depolymerisation of biomacromolecules are common and fundamental phenomena in biological systems, which can be controlled by the selective modification of biomacromolecules through molecular recognition. Herein, a porphyrin tripod (DPZnT) connected through a triazole bridge was prepared as a monomeric building block for guest-induced supramolecular polymerisation. Although the lone pair electrons in triazolic nitrogen potentially bind to the zinc porphyrin units through axial ligation, the intrinsic steric hindrance suppressed the coordination of the triazole bridge to the porphyrin unit in DPZnT. Therefore, DPZnT formed spherical nanoparticles through π-π interactions. The addition of 1,3,5-tris(pyridine-4-yl)benzene (Py3B) caused the guest-induced fibrous supramolecular polymerisation of DPZnT by forming a 1:1 host-guest complex, which was further assembled into a fibrous polymer. Furthermore, addition of Cl− to DPZnT induced the transformation of spherical nanoparticles to fibrous supramolecular polymers. The fibrous supramolecular polymers of DPZnT obtained by adding Py3B or Cl− were depolymerised to their original spherical particles after adding Cu(ClO4)2 or AgNO3, respectively.


Small ◽  
2022 ◽  
pp. 2105880
Author(s):  
Paulo Henrique M. Buzzetti ◽  
Marie Carrière ◽  
Monica Brachi ◽  
Karine Gorgy ◽  
Muhammad Mumtaz ◽  
...  
Keyword(s):  

Author(s):  
Emerson Teixeira da Silva ◽  
Luciano da Silva Santos ◽  
Gabriel Fernandes de Andrade ◽  
Emerson Joaquim Rodrigues Rosa ◽  
Marcus Vinícius Nora de Souza

2022 ◽  
Author(s):  
Kenneth R. Hamm ◽  
Dawn R. Phillips ◽  
Kauser S. Imtiaz ◽  
Ivatury S. Raju
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document