Multi-electron redox reaction of an organic radical cathode induced by a mesopore carbon network with nitroxide polymers

2013 ◽  
Vol 15 (48) ◽  
pp. 20921 ◽  
Author(s):  
Qian Huang ◽  
Daiwon Choi ◽  
Lelia Cosimbescu ◽  
John P. Lemmon
2016 ◽  
Vol 306 ◽  
pp. 812-816 ◽  
Author(s):  
Qian Huang ◽  
Eric D. Walter ◽  
Lelia Cosimbescu ◽  
Daiwon Choi ◽  
John P. Lemmon

2004 ◽  
Vol 114 ◽  
pp. 533-535 ◽  
Author(s):  
H.-J. Lee ◽  
H.-B. Cui ◽  
H. Fujiwara ◽  
H. Kobayashi ◽  
E. Fujiwara ◽  
...  

2018 ◽  
Author(s):  
Madushani Dharmarwardana ◽  
André F. Martins ◽  
Zhuo Chen ◽  
Philip M. Palacios ◽  
Chance M. Nowak ◽  
...  

Superoxide overproduction is known to occur in multiple disease states requiring critical care yet non-invasive detection of superoxide in deep tissue remains a challenge. Herein, we report a metal-free magnetic resonance imaging (MRI) and electron paramagnetic resonance (EPR) active contrast agent prepared by “click conjugating” paramagnetic organic radical contrast agents (ORCAs) to the surface of tobacco mosaic virus (TMV). While ORCAs are known to be reduced <i>in vivo</i> to an MRI/EPR silent state, their oxidation is facilitated specifically by reactive oxygen species—in particular superoxide—and are largely unaffected by peroxides and molecular oxygen. Unfortunately, single molecule ORCAs typically offer weak MRI contrast. In contrast, our data confirm that the macromolecular ORCA-TMV conjugates show marked enhancement for <i>T<sub>1</sub></i> contrast at low field (<3.0 T), and <i>T<sub>2</sub></i> contrast at high field (9.4 T). Additionally, we demonstrated that the unique topology of TMV allows for “quenchless fluorescent” bimodal probe for concurrent fluorescence and MRI/EPR imaging, which was made possible by exploiting the unique inner and outer surface of the TMV nanoparticle. <a>Finally, we show TMV-ORCAs do not respond to normal cellular respiration, minimizing the likelihood for background, yet still respond to enzymatically produced superoxide in complicated biological fluids like serum.</a>


2019 ◽  
Author(s):  
Hamilton Lee ◽  
Jenica Lumata ◽  
Michael A. Luzuriaga ◽  
Candace Benjamin ◽  
Olivia Brohlin ◽  
...  

<div><div><div><p>Many contrast agents for magnetic resonance imaging are based on gadolinium, however side effects limit their use in some patients. Organic radical contrast agents (ORCAs) are potential alternatives, but are reduced rapidly in physiological conditions and have low relaxivities as single molecule contrast agents. Herein, we use a supramolecular strategy where cucurbit[8]uril binds with nanomolar affinities to ORCAs and protects them against biological reductants to create a stable radical in vivo. We further over came the weak contrast by conjugating this complex on the surface of a self-assembled biomacromolecule derived from the tobacco mosaic virus.</p></div></div></div>


2004 ◽  
Vol 69 (2) ◽  
pp. 419-425 ◽  
Author(s):  
Katarína Gmucová ◽  
Jozef Orlický ◽  
Juraj Pavlásek

The redox reaction of the neurotransmitter dopamine at the carbon fibre microelectrode was studied by several electrochemical methods. It was found that under conditions usual in a living body, the diffusion current fullfils, within experimental errors, the behavior theoretically predicted by the Cottrell equation. Nevertheless, attention should be paid to the fact that unsupported or weakly supported conditions give rise to a non-Cottrell response of diffusion current. Moreover, similar changes were observed if the dopamine concentration was either lower such as several units of μmol l-1, or about 100 μmol l-1 or higher. The non-Cottrell behavior of diffusion current involves the nonlinearity of the dopamine calibration curve obtained by pulse techniques. The present work is aimed at pointing out that such behavior of the measured data could lead to misinterpretation of the obtained dopamine concentration. Similar features could be also achieved for the other catecholamines.


Sign in / Sign up

Export Citation Format

Share Document