electrochemical characteristics
Recently Published Documents


TOTAL DOCUMENTS

1915
(FIVE YEARS 348)

H-INDEX

65
(FIVE YEARS 10)

Author(s):  
Shuliang Wang ◽  
Mengjun Yao ◽  
Yangzhong Jing ◽  
Xujia He ◽  
Mingyu Bao ◽  
...  

Abstract A high-temperature autoclave was used to grow CO2 corrosion-product films on P110SS steel specimens while the surface of the specimens was continuously subjected to tensile stress in a four-point bending jig; the autoclaving times were 6, 18, 36, and 72 h. A scanning electron microscope was used to observe the surface topography of the corrosion-product films formed on the P110SS steels. An X-ray diffraction was used to analyze the phase compositions of the corrosion products. The electrochemical performance of the films was investigated using electrochemical impedance spectroscopy and potentiodynamic polarization curves. The results showed that tensile stress could hinder the formation of corrosion-product films; the integrity and compactness of the films worsened, but the phase compositions of the films did not change. The applied tensile stress resulted in a smaller grain size of the corrosion-product films, and the grain boundaries increased. In addition, owing to the induced tensile stress, the charge transfer resistances decreased, and the corrosion current densities increased for the P110SS steels with corrosion-product films in a 3.5 wt.% NaCl solution saturated with CO2.


Author(s):  
Agus Subagio ◽  
Heydar Ruffa Taufiq ◽  
Ali Khumaeni ◽  
Ngurah Ayu Ketut Umiati ◽  
Kusworo Adi

Abstract Multiwalled carbon nanotubes have great potential when applied as biosensors. Their properties, especially as electrodes with electrochemical characteristics, offer strong benefits for developing biosensors. This research has been able to integrate multiwalled carbon nanotubes (MWCNTs) with Au nanoparticles (Au-NPs) to obtain several new superior properties. Cysteaminium chloride is used to link MWCNTs and Au-NPs while binding to specific antibodies to make them more sensitive to some diseases or viruses. The data on the success of the bonding of MWCNTs/Au-NPs were tested using three characterizations, namely FTIR, SEM, and XRD. Based on the results of testing electrochemical properties using the CV and EIS tests, the capacitance value of 6,363 Fg-1 and the Rct value of 717,9 Ω, respectively. This demonstrates good adhesion and electron transfer properties from the electrolyte to the probe and electrode.


2022 ◽  
Vol 30 (1) ◽  
pp. 351-376
Author(s):  
Thilageshwaran Subramaniam ◽  
Mohamed Ansari Mohamed Nainar ◽  
Noor Afeefah Nordin

Supercapacitors have gained much attention in recent years due to their promising characteristics, such as high specific capacitance, high power density, long cycle life, and environment-friendly nature. Usage of natural sources for activated carbon synthesis is a major focus by many researchers worldwide for discovering a replacement of existing supercapacitors. This review summarizes the methods used to synthesize activated carbon (AC) from various natural fiber, their physical and electrochemical characteristics, and the improvement of supercapacitor electrode performance. Previous research studies indicate the practicability of activated carbon derived from various natural fibers with superior electrochemical properties. The effect of activating reagents and temperature on the electrochemical performance for supercapacitor applications are also highlighted in this paper. Since the nature of activated carbon from fibers and its synthesizing methods would result in different properties, the Cyclic Voltammetry (CV) study is also thoroughly discussed on the specific capacitance together with charge/discharge test to observe the capacitance retention after several cycles. Finally, a detailed approach of converting biowaste materials to activated carbon for energy storage applications with environmental concerns is explored.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 215
Author(s):  
Seokwon Lee ◽  
Yeon-Ho Joung ◽  
Yong-Kyu Yoon ◽  
Wonseok Choi

In this study, a four-inch zinc oxide (ZnO) nanostructure was synthesized using radio frequency (RF) magnetron sputtering to maximize the electrochemical performance of the anode material of a lithium-ion battery. All materials were grown on cleaned p-type silicon (100) wafers with a deposited copper layer inserted at the stage. The chamber of the RF magnetron sputtering system was injected with argon and oxygen gas for the growth of the ZnO films. A hydrogen (H2) reduction process was performed in a plasma enhanced chemical vapor deposition (PECVD) chamber to synthesize the ZnO nanostructure (ZnO NS) through modification of the surface structure of a ZnO film. Field emission scanning electron microscopy and atomic force microscopy were performed to confirm the surface and structural properties of the synthesized ZnO NS, and cyclic voltammetry was used to examine the electrochemical characteristics of the ZnO NS. Based on the Hall measurement, the ZnO NS subjected to H2 reduction had a higher electron mobility and lower resistivity than the ZnO film. The ZnO NS that was subjected to H2 reduction for 5 min and 10 min had average roughness of 3.117 nm and 3.418 nm, respectively.


Author(s):  
Chanakarn Sanguarnsak ◽  
Kiattisak Promsuwan ◽  
Jenjira Saichanapan ◽  
Asamee Soleh ◽  
Kasrin Saisahas ◽  
...  

Abstract A new electrode material of phosphorus-doped multi-walled carbon nanotubes (P-MWCNTs) was developed as an electrochemical sensing element for amitriptyline (AMT). P-MWCNTs were hydrothermally synthesized and drop casted on a glassy carbon electrode (P-MWCNTs/GCE). The P-MWCNTs were morphologically, chemically and structurally characterized. The electrochemical characteristics of the P-MWCNTs/GCE were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and adsorptive stripping voltammetry (AdSV). The P-MWCNTs increased electron transfer at the GCE and the electrochemical conductivity of the electrode. Electrocatalytic activity toward the oxidation of AMT was excellent. In the optimal voltammetric condition, the P-MWCNTs/GCE produced linear ranges of 0.50 to 10 µg mL-1 and 10 to 40 µg mL-1. The limit of detection (LOD) and limit of quantification (LOQ) were 0.15 µg mL-1 (0.54 µM) and 0.52 µg mL-1 (1.80 µM), respectively. The developed sensor displayed good repeatability, reproducibility and specificity. The sensor successfully quantified AMT in pharmaceutical tablets, giving results consistent with spectrophotometric analysis. The sensor achieved recoveries from 98±2% to 101±5% from spiked urine samples. The proposed sensor could be applied to determine AMT in pharmaceutical and urine samples for forensic toxicology.


Author(s):  
Shuping Xu ◽  
Dandan Liu ◽  
Aihua Liu ◽  
Fu Sun ◽  
Shengying Pan ◽  
...  

Abstract A novel and facile rapid combustion approach was developed for the controllable preparation of small size and easy recovery magnesium-zinc ferrites for methyl blue (MB) removal in dye solution. The effects of prepared criteria of x value, calcination temperature, and the amount of ethanol on the average grain sizes and magnetic property were reviewed. The characterization results displayed that Mg0.5Zn0.5Fe2O4 nanoparticles met the expectations of the experiment at the calcination temperature of 400℃ with absolute ethanol volume of 20 mL, and they were selected to remove MB. The adsorption process belonged to chemical adsorption on the basis of the pseudo-second-order model. The electrochemical characteristics of MB onto the prepared nanoparticles were analyzed by cyclic voltammetry (CV). The influences of pH and cycle times on the removal efficiency were investigated. When the pH went beyond 3, the removal efficiency of MB onto the magnetic Mg0.5Zn0.5Fe2O4 nanoparticles maintained above 99%,the maximum adsorption capacity was 318.18 mg/g. After seven cycles, the relative removal rate of MB remained 96% of the first one.


Author(s):  
Evgeny Kitsyuk ◽  
Julia Kakovkina ◽  
Egor Lebedev ◽  
Dmitry Kuzmin ◽  
Aleksey Alekseyev ◽  
...  

Controlling the ratio of capacitance and power of supercapacitors by changing the composition of the electrodes will allow to create optimal power systems for specific applications. For the formation of such electrodes, a method is required that combines the possibilities of creating a multicomponent composite with a high degree of uniformity of composition and morphology over the layer thickness. An example of such a method can be the eco-friendly method of electrophoretic deposition used in this work, which makes it possible to locally deposit a composite material from multicomponent suspensions at room temperature. We present an approach related to electrophoretic deposition from a suspension of composite material SuperC-RuO 2 , in which the ratio of the components can be changed to vary the proportion of electrochemical and electrical double layer storage. Nanocarbon, which has a large surface area, and ruthenium oxide with a significant electrochemical capacity, in combination, will allow combining high power and capacity in one device, and their ratio will determine the proportion of electrochemical and electrical double layer storage. In this work, approaches are investigated and recommendations are given for increasing the stability of suspensions, the effect of the composition of the suspension on the composition of composite electrodes and their capacitive and power characteristics is determined.


Author(s):  
Gaopan Lei ◽  
Dong Zhu ◽  
Di Zhu

In the aerospace field, difficult-to-machine materials are used widely to improve engine performance. As a nickel-based material that performs well in all aspects, Inconel 625 is used for the blisks of aircraft engines, and electrochemical trepanning (ECTr) is used widely to fabricate such blisks because of its unique advantages regarding ruled surface parts. In this study, to investigate the performance of Inconel 625 in ECTr, measurements were made of the electrochemical characteristics firstly, specifically the anodic polarization curve and the actual volumetric electrochemical equivalent curve. Then, via dynamic electric-field simulations, the processes for forming Inconel 625 blades using ECTr were examined under direct voltage (DV) and pulsed voltage. The contours and current density distributions of formed blades at different times were obtained under different duty cycles. With decreasing duty cycle, the forming accuracy improved gradually and the stray current was reduced. To verify the simulation results, ECTr experiments with Inconel 625 were performed under different voltage conditions. With DV and 90% and 80% duty cycle, the taper angles of the machined blades were 7.784°, 6.278°, and 5.191°, respectively, and the surface roughness ( Ra) values were 0.95, 0.81, and 0.72 μm, respectively. With DV, there were obvious flow marks and gullies on the microscopic surface. With decreasing duty cycle, stray corrosion was reduced effectively and the state of the flow field was improved. Overall, the simulation results were verified effectively.


Sign in / Sign up

Export Citation Format

Share Document