scholarly journals Enantioselective synthesis of tetrahydroquinolines, tetrahydroquinoxalines, and tetrahydroisoquinolines via Pd-Catalyzed alkene carboamination reactions

2014 ◽  
Vol 5 (12) ◽  
pp. 4840-4844 ◽  
Author(s):  
B. A. Hopkins ◽  
J. P. Wolfe

Asymmetric palladium-catalyzed carboamination reactions of aminoalkene substrates provide substituted six-membered heterocycles bearing quaternary stereocenters in good yield and high enantioselectivity.

2019 ◽  
Vol 23 (11) ◽  
pp. 1168-1213 ◽  
Author(s):  
Samar Noreen ◽  
Ameer Fawad Zahoor ◽  
Sajjad Ahmad ◽  
Irum Shahzadi ◽  
Ali Irfan ◽  
...  

Background: Asymmetric catalysis holds a prestigious role in organic syntheses since a long time and chiral inductors such as ligands have been used to achieve the utmost desired results at this pitch. The asymmetric version of Tsuji-Trost allylation has played a crucial role in enantioselective synthesis. Various chiral ligands have been known for Pdcatalyzed Asymmetric Allylic Alkylation (AAA) reactions and exhibited excellent catalytic potential. The use of chiral ligands as asymmetric inductors has widened the scope of Tsuji-Trost allylic alkylation reactions. Conclusion: Therefore, in this review article, a variety of chiral inductors or ligands have been focused for palladium catalyzed asymmetric allylic alkylation (Tsuji-Trost allylation) and in this regard, recently reported literature (2013-2017) has been described. The use of ligands causes the induction of enantiodiscrimination to the allylated products, therefore, the syntheses of various kinds of ligands have been targeted by many research groups to employ in Pd-catalyzed AAA reactions.


ChemInform ◽  
2016 ◽  
Vol 47 (24) ◽  
Author(s):  
Yi Wei ◽  
Liang-Qiu Lu ◽  
Tian-Ren Li ◽  
Bin Feng ◽  
Qiang Wang ◽  
...  

2004 ◽  
Vol 76 (3) ◽  
pp. 671-678 ◽  
Author(s):  
Ross A. Widenhoefer

The reaction of a 3-butenyl β-diketone with a catalytic amount of PdCl2(CH3CN)2 in dioxane at room temperature led to olefin hydroalkylation and formation of the corresponding 2-acylcyclohexanone in good yield as a single regioisomer. Deuterium-labeling experiments for the hydroalkylation of 7-octene-2,4-dione were in accord with a mechanism involving outer-sphere attack of the pendant enol on a palladium-complexed olefin to form a palladium cyclohexyl species, followed by palladium migration via iterative β-hydride elimination/addition and protonolysis from a palladium enolate complex. In comparison to a 3-butenyl β-diketone, reaction of a 4-pentenyl β-diketone with a catalytic amount of PdCl2(CH3CN)2 in the presence of CuCl2 led to oxidative alkylation and formation of the corresponding 2-acyl-3-methyl-2-cyclohexenone in good yield as a single isomer. Unactivated olefins tethered to less reactive carbon nucleophiles such as β-keto esters, α-aryl ketones, and even dialkyl ketones underwent palladium-catalyzed hydroalkylation in the presence of Me3SiCl or HCl to form the corresponding cyclohexanones in moderate-to-good yield with high regioselectivity.


Sign in / Sign up

Export Citation Format

Share Document