allylic alkylation
Recently Published Documents


TOTAL DOCUMENTS

1809
(FIVE YEARS 189)

H-INDEX

89
(FIVE YEARS 10)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 432
Author(s):  
Sulejman Alihodžić ◽  
Hana Čipčić Paljetak ◽  
Ana Čikoš ◽  
Ivaylo Jivkov Elenkov

Unprecedented tandem allylic alkylation/intermolecular Michael addition was used in the preparation of novel bicyclic azalides. NMR spectroscopy was used not only to unambiguously determine and characterize the structures of these unexpected products of chemical reaction but also to investigate the effect the rigid bicyclic modification has on the conformation of the whole molecule. Thus, some of the macrolides prepared showed antibacterial activity in the range of well-known antibiotic drug azithromycin.


Author(s):  
Dong Li ◽  
Shuaibo Zhang ◽  
Bangzhong Wang ◽  
Wuding Sun ◽  
Jinfeng Zhao ◽  
...  

An efficient catalytic methodology for trifluoromethylated allylic alkylation of 3-substituted oxindoles using α-(trifluoromethyl)alkenyl acetates as trifluoromethyl-containing allylic alkylation partner is described. The reaction proceeds smoothly with the incorporation of Pd(OAc)2...


Author(s):  
Shutao Wang ◽  
lianyou Zheng ◽  
Shaoli Song ◽  
Siyu Wang ◽  
Zhuoqi Zhang ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
◽  
Matthew Fisk

<p>The design and development of new chemical reactions is crucial for progress in organic synthesis research. Cascade reactions, involving two or more steps carried out in situ in a single pot, provide a step-efficient and atom-economic route to synthesise polycyclic ring systems. The synthesis of new heterocyclic ring systems provides valuable routes towards complex natural products. Previous work in the Harvey group led to the development of a regioselective palladium-catalysed allylic alkylation (Pd-AA) cascade. This research aims to expand the scope and utility of this existing Pd-AA cascade, by optimising the current reaction conditions and exploring a range of non-symmetric pyran-based bis-electrophiles and nitrogen and sulfur-based β-carbonyl bis-nucleophiles.  Isomeric 2,3-unsaturated silyl glycosides based on D-glucose and D-galactose were successfully synthesised. These substrates were assessed as bis-electrophiles in the Pd-AA cascade. The yield of the cascade was successfully optimised with the glucose-derived substrate 4-hydroxy-6-methylpyran-2-one, using Pd₂(dba)₃ and Xantphos, to 87% from the previously reported 77% yield. However, the galactose-derived silyl glycoside formed an undesired pyranone as the major product. Additionally, a series of β-dicarbonyl compounds (4-hydroxy-6-methylpyran-2-one analogues) were assessed as bis-nucleophiles in the Pd-AA cascade, with all of the analogues forming complex mixtures of side products and a fully unsaturated pyranone as the major isolated product.</p>


2021 ◽  
Author(s):  
◽  
Matthew Fisk

<p>The design and development of new chemical reactions is crucial for progress in organic synthesis research. Cascade reactions, involving two or more steps carried out in situ in a single pot, provide a step-efficient and atom-economic route to synthesise polycyclic ring systems. The synthesis of new heterocyclic ring systems provides valuable routes towards complex natural products. Previous work in the Harvey group led to the development of a regioselective palladium-catalysed allylic alkylation (Pd-AA) cascade. This research aims to expand the scope and utility of this existing Pd-AA cascade, by optimising the current reaction conditions and exploring a range of non-symmetric pyran-based bis-electrophiles and nitrogen and sulfur-based β-carbonyl bis-nucleophiles.  Isomeric 2,3-unsaturated silyl glycosides based on D-glucose and D-galactose were successfully synthesised. These substrates were assessed as bis-electrophiles in the Pd-AA cascade. The yield of the cascade was successfully optimised with the glucose-derived substrate 4-hydroxy-6-methylpyran-2-one, using Pd₂(dba)₃ and Xantphos, to 87% from the previously reported 77% yield. However, the galactose-derived silyl glycoside formed an undesired pyranone as the major product. Additionally, a series of β-dicarbonyl compounds (4-hydroxy-6-methylpyran-2-one analogues) were assessed as bis-nucleophiles in the Pd-AA cascade, with all of the analogues forming complex mixtures of side products and a fully unsaturated pyranone as the major isolated product.</p>


Sign in / Sign up

Export Citation Format

Share Document