Porous and strong three-dimensional carbon nanotube coated ceramic scaffolds for tissue engineering

2015 ◽  
Vol 3 (42) ◽  
pp. 8337-8347 ◽  
Author(s):  
P. Newman ◽  
Z. Lu ◽  
S. I. Roohani-Esfahani ◽  
T. L. Church ◽  
M. Biro ◽  
...  

A method to coat high-quality uniform coatings of carbon nanotubes throughout 3D porous structures is developed. Testing of their physical and biological properties demonstrate their potential for application in tissue engineering.

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3577 ◽  
Author(s):  
Ilaria Silvestro ◽  
Iolanda Francolini ◽  
Valerio Di Lisio ◽  
Andrea Martinelli ◽  
Loris Pietrelli ◽  
...  

Scaffolds are three-dimensional porous structures that must have specific requirements to be applied in tissue engineering. Therefore, the study of factors affecting scaffold performance is of great importance. In this work, the optimal conditions for cross-linking preformed chitosan (CS) scaffolds by the tripolyphosphate polyanion (TPP) were investigated. The effect on scaffold physico-chemical properties of different concentrations of chitosan (1 and 2% w/v) and tripolyphosphate (1 and 2% w/v) as well as of cross-linking reaction times (2, 4, or 8 h) were studied. It was evidenced that a low CS concentration favored the formation of three-dimensional porous structures with a good pore interconnection while the use of more severe conditions in the cross-linking reaction (high TPP concentration and crosslinking reaction time) led to scaffolds with a suitable pore homogeneity, thermal stability, swelling behavior, and mechanical properties, but having a low pore interconnectivity. Preliminary biocompatibility tests showed a good osteoblasts’ viability when cultured on the scaffold obtained by CS 1%, TPP 1%, and an 8-h crosslinking time. These findings suggest how modulation of scaffold cross-linking conditions may permit to obtain chitosan scaffold with properly tuned morphological, mechanical and biological properties for application in the tissue regeneration field.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1038
Author(s):  
Sonia Trombino ◽  
Federica Curcio ◽  
Roberta Cassano ◽  
Manuela Curcio ◽  
Giuseppe Cirillo ◽  
...  

Cardiac regeneration aims to reconstruct the heart contractile mass, preventing the organ from a progressive functional deterioration, by delivering pro-regenerative cells, drugs, or growth factors to the site of injury. In recent years, scientific research focused the attention on tissue engineering for the regeneration of cardiac infarct tissue, and biomaterials able to anatomically and physiologically adapt to the heart muscle have been proposed as valuable tools for this purpose, providing the cells with the stimuli necessary to initiate a complete regenerative process. An ideal biomaterial for cardiac tissue regeneration should have a positive influence on the biomechanical, biochemical, and biological properties of tissues and cells; perfectly reflect the morphology and functionality of the native myocardium; and be mechanically stable, with a suitable thickness. Among others, engineered hydrogels, three-dimensional polymeric systems made from synthetic and natural biomaterials, have attracted much interest for cardiac post-infarction therapy. In addition, biocompatible nanosystems, and polymeric nanoparticles in particular, have been explored in preclinical studies as drug delivery and tissue engineering platforms for the treatment of cardiovascular diseases. This review focused on the most employed natural and synthetic biomaterials in cardiac regeneration, paying particular attention to the contribution of Italian research groups in this field, the fabrication techniques, and the current status of the clinical trials.


2014 ◽  
Vol 5 ◽  
pp. 1575-1579 ◽  
Author(s):  
Christoph Nick ◽  
Sandeep Yadav ◽  
Ravi Joshi ◽  
Christiane Thielemann ◽  
Jörg J Schneider

The growth of cortical neurons on three dimensional structures of spatially defined (structured) randomly oriented, as well as on vertically aligned, carbon nanotubes (CNT) is studied. Cortical neurons are attracted towards both types of CNT nano-architectures. For both, neurons form clusters in close vicinity to the CNT structures whereupon the randomly oriented CNTs are more closely colonised than the CNT pillars. Neurons develop communication paths via neurites on both nanoarchitectures. These neuron cells attach preferentially on the CNT sidewalls of the vertically aligned CNT architecture instead than onto the tips of the individual CNT pillars.


2020 ◽  
Vol 318 ◽  
pp. 01045
Author(s):  
Gokhan Ates

In tissue engineering, three-dimensional functional scaffolds with tailored biological properties are needed to be able to mimic the hierarchical structure of biological tissues. Recent developments in additive biomanufacturing allow to extrude multiple materials enabling the fabrication of more sophisticated tissue constructs. These multi-material biomanufacturing systems comprise multiple printing heads through which individual materials are sequentially printed. Nevertheless, as more printing heads are added the fabrication process significantly decreases, since it requires mechanical switching among the physically separated printheads to enable printing multiple materials. In addition, this approach is not able to create biomimetic tissue constructs with property gradients. To address these limitations, this paper presents a novel static mixing extrusion printing head to enable the fabrication of multi-material, functionally graded structures using a single nozzle. Computational fluid dynamics (CFD) was used to numerically analyze the influence of Reynolds number on the flow pattern of biomaterials and mixing efficiency considering different miscible materials.


2002 ◽  
Vol 739 ◽  
Author(s):  
Mark Hughes ◽  
George Z. Chen ◽  
Milo S. P. Shaffer ◽  
Derek J. Fray ◽  
Alan H. Windle

ABSTRACTNanoporous composite films of multi-walled carbon nanotubes (MWNTs) and either polypyrrole (PPy) or poly(3-methylthiophene) (P3MeT) were grown using an electrochemical polymerization technique in which the nanotubes and conducting polymer were deposited simultaneously. The concentration and dispersion of MWNTs in the polymerization electrolyte was found to have a significant effect on the thickness of polymer coated on each MWNT and hence the loading of MWNTs in the films produced. It has been shown that for an increasing concentration of MWNTs in the polymerization electrolyte, the thickness of polymer coated on each MWNT decreases. This relationship made it possible to minimize ionic diffusion distances within the nanoporous MWNT-PPy films produced, reducing their electrical and ionic resistance and increasing their capacitance relative to similarly prepared pure PPy films.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Boyang Huang

Abstract Carbon nanotubes (CNTs), with unique graphitic structure, superior mechanical, electrical, optical and biological properties, has attracted more and more interests in biomedical applications, including gene/drug delivery, bioimaging, biosensor and tissue engineering. In this review, we focus on the role of CNTs and their polymeric composites in tissue engineering applications, with emphasis on their usages in the nerve, cardiac and bone tissue regenerations. The intrinsic natures of CNTs including their physical and chemical properties are first introduced, explaining the structure effects on CNTs electrical conductivity and various functionalization of CNTs to improve their hydrophobic characteristics. Biosafety issues of CNTs are also discussed in detail including the potential reasons to induce the toxicity and their potential strategies to minimise the toxicity effects. Several processing strategies including solution-based processing, polymerization, melt-based processing and grafting methods are presented to show the 2D/3D construct formations using the polymeric composite containing CNTs. For the sake of improving mechanical, electrical and biological properties and minimising the potential toxicity effects, recent advances using polymer/CNT composite the tissue engineering applications are displayed and they are mainly used in the neural tissue (to improve electrical conductivity and biological properties), cardiac tissue (to improve electrical, elastic properties and biological properties) and bone tissue (to improve mechanical properties and biological properties). Current limitations of CNTs in the tissue engineering are discussed and the corresponded future prospective are also provided. Overall, this review indicates that CNTs are promising “next-generation” materials for future biomedical applications.


2019 ◽  
Vol 30 (8) ◽  
pp. 1216-1224 ◽  
Author(s):  
Mohammad Charara ◽  
Mohammad Abshirini ◽  
Mrinal C Saha ◽  
M Cengiz Altan ◽  
Yingtao Liu

This article presents three-dimensional printed and highly sensitive polydimethylsiloxane/multi-walled carbon nanotube sensors for compressive strain and pressure measurements. An electrically conductive polydimethylsiloxane/multi-walled carbon nanotube nanocomposite is developed to three-dimensional print compression sensors in a freestanding and layer-by-layer manner. The dispersion of multi-walled carbon nanotubes in polydimethylsiloxane allows the uncured nanocomposite to stand freely without any support throughout the printing process. The cross section of the compression sensors is examined under scanning electron microscope to identify the microstructure of nanocomposites, revealing good dispersion of multi-walled carbon nanotubes within the polydimethylsiloxane matrix. The sensor’s sensitivity was characterized under cyclic compression loading at various max strains, showing an especially high sensitivity at lower strains. The sensing capability of the three-dimensional printed nanocomposites shows minimum variation at various applied strain rates, indicating its versatile potential in a wide range of applications. Cyclic tests under compressive loading for over 8 h demonstrate that the long-term sensing performance is consistent. Finally, in situ micromechanical compressive tests under scanning electron microscope validated the sensor’s piezoresistive mechanism, showing the rearrangement, reorientation, and bending of the multi-walled carbon nanotubes under compressive loads, were the main reasons that lead to the piezoresistive sensing capabilities in the three-dimensional printed nanocomposites.


2008 ◽  
Vol 55-57 ◽  
pp. 685-688 ◽  
Author(s):  
J. Chamchongkaset ◽  
Sorada Kanokpanont ◽  
David L. Kaplan ◽  
Siriporn Damrongsakkul

Silk has been used commercially as biomedical sutures for decades. Recently silk fibroin, especially from Bombyx mori silkworm, has been explored for many tissue engineering applications such as bone and cartilage due to its impressive biological compatibility and mechanical properties. In Thailand, Thai native silkworms have been long cultivated. Distinct characteristics of cocoon Thai silk are its yellow color and coarse filament. There is more sericin in Thai silk than in other Bombyx mori silks. These characteristics provide Thai silk a unique texture for textile industry. It is therefore the aim of this study to develop three-dimensional silk fibroin-based scaffolds from Thai yellow cocoon “Nangnoi-Srisaket” of Bombyx mori silkworms using salt-leaching method. To enhance the biological properties, type A gelatin, the denature form of collagen having good biocompactibility, was used to conjugate with silk fibroin scaffolds. The pore size of salt-leached silk fibroin scaffold structure represented the size of salt crystals used (600-710µm). After gelatin conjugation, gelatin was partly formed fibers inside the pores of silk fibroin scaffolds resulting in fiber-like structure with highly interconnection. Gelatin conjugation enhanced the compressive modulus of silk fibroin scaffolds by 93%. The results on in vitro culture using mouse osteoblast-like cells (MC3T3-E1) showed that gelatin conjugation could promote the cell proliferation in silk fibroin scaffolds. Moreover, the observed morphology of cells proliferated inside the scaffold after 14 days of culture showed the larger spreading area of cells on conjugated gelatin/silk fibroin scaffolds, compared to round-shaped cells on silk fibroin scaffolds. The results implied that Thai silk fibroin looked promising to be applied in tissue engineering and gelatin conjugation on Thai silk fibroin scaffolds could enhance the biological properties of scaffolds.


Sign in / Sign up

Export Citation Format

Share Document