Investigation of synergistic effects of inductive and conductive factors in gelatin-based cryogels for bone tissue engineering

2016 ◽  
Vol 4 (10) ◽  
pp. 1827-1841 ◽  
Author(s):  
Han-Tsung Liao ◽  
K. T. Shalumon ◽  
Kun-Hung Chang ◽  
Chialin Sheu ◽  
Jyh-Ping Chen

Gelatin cryogels modified with nHAP and BMP-2 could provide cues to promote the osteogenesis of ADSCs in vitro and in vivo.

2022 ◽  
Vol 5 (1) ◽  
pp. 8
Author(s):  
Giorgia Borciani ◽  
Giorgia Montalbano ◽  
Nicola Baldini ◽  
Chiara Vitale-Brovarone ◽  
Gabriela Ciapetti

New biomaterials and scaffolds for bone tissue engineering (BTE) applications require to be tested in a bone microenvironment reliable model. On this assumption, the in vitro laboratory protocols with bone cells represent worthy experimental systems improving our knowledge about bone homeostasis, reducing the costs of experimentation. To this day, several models of the bone microenvironment are reported in the literature, but few delineate a protocol for testing new biomaterials using bone cells. Herein we propose a clear protocol to set up an indirect co-culture system of human-derived osteoblasts and osteoclast precursors, providing well-defined criteria such as the cell seeding density, cell:cell ratio, the culture medium, and the proofs of differentiation. The material to be tested may be easily introduced in the system and the cell response analyzed. The physical separation of osteoblasts and osteoclasts allows distinguishing the effects of the material onto the two cell types and to evaluate the correlation between material and cell behavior, cell morphology, and adhesion. The whole protocol requires about 4 to 6 weeks with an intermediate level of expertise. The system is an in vitro model of the bone remodeling system useful in testing innovative materials for bone regeneration, and potentially exploitable in different application fields. The use of human primary cells represents a close replica of the bone cell cooperation in vivo and may be employed as a feasible system to test materials and scaffolds for bone substitution and regeneration.


2019 ◽  
Vol 213 ◽  
pp. 27-38 ◽  
Author(s):  
Ximu Zhang ◽  
Chao Wang ◽  
Min Liao ◽  
Lina Dai ◽  
Yingying Tang ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ran Zhang ◽  
Xuewen Li ◽  
Yao Liu ◽  
Xiaobo Gao ◽  
Tong Zhu ◽  
...  

Biocompatible scaffolding materials play an important role in bone tissue engineering. This study sought to develop and characterize a nano-hydroxyapatite (nHA)/collagen I (ColI)/multi-walled carbon nanotube (MWCNT) composite scaffold loaded with recombinant bone morphogenetic protein-9 (BMP-9) for bone tissue engineering by in vitro and in vivo experiments. The composite nHA/ColI/MWCNT scaffolds were fabricated at various concentrations of MWCNTs (0.5, 1, and 1.5% wt) by blending and freeze drying. The porosity, swelling rate, water absorption rate, mechanical properties, and biocompatibility of scaffolds were measured. After loading with BMP-9, bone marrow mesenchymal stem cells (BMMSCs) were seeded to evaluate their characteristics in vitro and in a critical sized defect in Sprague-Dawley rats in vivo. It was shown that the 1% MWCNT group was the most suitable for bone tissue engineering. Our results demonstrated that scaffolds loaded with BMP-9 promoted differentiation of BMMSCs into osteoblasts in vitro and induced more bone formation in vivo. To conclude, nHA/ColI/MWCNT scaffolds loaded with BMP-9 possess high biocompatibility and osteogenesis and are a good candidate for use in bone tissue engineering.


2015 ◽  
Vol 3 (18) ◽  
pp. 3799-3809 ◽  
Author(s):  
Mengchi Xu ◽  
Hong Li ◽  
Dong Zhai ◽  
Jiang Chang ◽  
Shiyi Chen ◽  
...  

Hierarchically bioceramic–silk scaffolds are composed of first-level pores (~1 mm) of bioceramic and second-level pores (∼50–100 μm) of silk matrix, showing improved in vitro and in vivo bioactivity.


2016 ◽  
Vol 89 (1) ◽  
pp. 847-853 ◽  
Author(s):  
Zhiyu Liao ◽  
Faris Sinjab ◽  
Amy Nommeots-Nomm ◽  
Julian Jones ◽  
Laura Ruiz-Cantu ◽  
...  

2019 ◽  
Vol 10 ◽  
pp. 204173141983042 ◽  
Author(s):  
Dong Joon Lee ◽  
Jane Kwon ◽  
Luke Current ◽  
Kun Yoon ◽  
Rahim Zalal ◽  
...  

Although bone marrow–derived mesenchymal stem cells (MSCs) have been extensively explored in bone tissue engineering, only few studies using mesenchymal stem cells from mandible (M-MSCs) have been reported. However, mesenchymal stem cells from mandible have the potential to be as effective as femur-derived mesenchymal stem cells (F-MSCs) in regenerating bone, especially in the orofacial regions, which share embryonic origin, proximity, and accessibility. M-MSCs were isolated and characterized using mesenchymal stem cell–specific markers, colony forming assay, and multi-potential differentiation. In vitro osteogenic potential, including proliferation, osteogenic gene expression, alkaline phosphatase activity, and mineralization, was examined and compared. Furthermore, in vivo bone formations of F-MSCs and M-MSCs in rat critical sized defect were evaluated using microCT and histology. M-MSCs from rat could be successfully isolated and expanded while preserving their MSC’s characteristics. M-MSCs demonstrated a comparable proliferation and mineralization potentials and in vivo bone formation as F-MSCs. M-MSCs is a promising cell source candidate for craniofacial bone tissue engineering.


2019 ◽  
Vol 9 (18) ◽  
pp. 3674 ◽  
Author(s):  
Jose A. Sanz-Herrera ◽  
Esther Reina-Romo

Bone tissue engineering is currently a mature methodology from a research perspective. Moreover, modeling and simulation of involved processes and phenomena in BTE have been proved in a number of papers to be an excellent assessment tool in the stages of design and proof of concept through in-vivo or in-vitro experimentation. In this paper, a review of the most relevant contributions in modeling and simulation, in silico, in BTE applications is conducted. The most popular in silico simulations in BTE are classified into: (i) Mechanics modeling and scaffold design, (ii) transport and flow modeling, and (iii) modeling of physical phenomena. The paper is restricted to the review of the numerical implementation and simulation of continuum theories applied to different processes in BTE, such that molecular dynamics or discrete approaches are out of the scope of the paper. Two main conclusions are drawn at the end of the paper: First, the great potential and advantages that in silico simulation offers in BTE, and second, the need for interdisciplinary collaboration to further validate numerical models developed in BTE.


Biomaterials ◽  
2008 ◽  
Vol 29 (22) ◽  
pp. 3245-3252 ◽  
Author(s):  
Diederik H.R. Kempen ◽  
Lichun Lu ◽  
Teresa E. Hefferan ◽  
Laura B. Creemers ◽  
Avudaiappan Maran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document