Solution-processed indium oxide electron transporting layers for high-performance and photo-stable perovskite and organic solar cells

Nanoscale ◽  
2017 ◽  
Vol 9 (42) ◽  
pp. 16305-16312 ◽  
Author(s):  
Seokhyun Yoon ◽  
Si Joon Kim ◽  
Harrison S. Kim ◽  
Joon-Suh Park ◽  
Il Ki Han ◽  
...  

Pin-hole free and conductive In2O3 electron transporting layers lead to a power conversion efficiency of 14.63% in a perovskite solar cell and 3.03% in an organic solar cell.

RSC Advances ◽  
2020 ◽  
Vol 10 (64) ◽  
pp. 38736-38745
Author(s):  
Shibo Wang ◽  
Weihai Sun ◽  
Mingjing Zhang ◽  
Huiying Yan ◽  
Guoxin Hua ◽  
...  

A perovskite solar cell with DDQ doped spiro-OMeTAD HTL delivers a champion power conversion efficiency of 21.16%.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenrong Jia ◽  
Shucheng Qin ◽  
Lei Meng ◽  
Qing Ma ◽  
Indunil Angunawela ◽  
...  

AbstractTandem organic solar cells are based on the device structure monolithically connecting two solar cells to broaden overall absorption spectrum and utilize the photon energy more efficiently. Herein, we demonstrate a simple strategy of inserting a double bond between the central core and end groups of the small molecule acceptor Y6 to extend its conjugation length and absorption range. As a result, a new narrow bandgap acceptor BTPV-4F was synthesized with an optical bandgap of 1.21 eV. The single-junction devices based on BTPV-4F as acceptor achieved a power conversion efficiency of over 13.4% with a high short-circuit current density of 28.9 mA cm−2. With adopting BTPV-4F as the rear cell acceptor material, the resulting tandem devices reached a high power conversion efficiency of over 16.4% with good photostability. The results indicate that BTPV-4F is an efficient infrared-absorbing narrow bandgap acceptor and has great potential to be applied into tandem organic solar cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Wageh ◽  
Mahfoudh Raïssi ◽  
Thomas Berthelot ◽  
Matthieu Laurent ◽  
Didier Rousseau ◽  
...  

AbstractPoly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) mixed with single-wall nanotubes (SWNTs) (10:1) and doped with (0.1 M) perchloric acid (HClO4) in a solution-processed film, working as an excellent thin transparent conducting film (TCF) in organic solar cells, was investigated. This new electrode structure can be an outstanding substitute for conventional indium tin oxide (ITO) for applications in flexible solar cells due to the potential of attaining high transparency with enhanced conductivity, good flexibility, and good durability via a low-cost process over a large area. In addition, solution-processed vanadium oxide (VOx) doped with a small amount of PEDOT-PSS(PH1000) can be applied as a hole transport layer (HTL) for achieving high efficiency and stability. From these viewpoints, we investigate the benefit of using printed SWNTs-PEDOT-PSS doped with HClO4 as a transparent conducting electrode in a flexible organic solar cell. Additionally, we applied a VOx-PEDOT-PSS thin film as a hole transporting layer and a blend of PTB7 (polythieno[3,4-b] thiophene/benzodithiophene): PC71BM (phenyl-C71-butyric acid methyl ester) as an active layer in devices. Zinc oxide (ZnO) nanoparticles were applied as an electron transport layer and Ag was used as the top electrode. The proposed solar cell structure showed an enhancement in short-circuit current, power conversion efficiency, and stability relative to a conventional cell based on ITO. This result suggests a great carrier injection throughout the interfacial layer, high conductivity and transparency, as well as firm adherence for the new electrode.


2020 ◽  
Vol 8 (44) ◽  
pp. 23239-23247
Author(s):  
Andy Man Hong Cheung ◽  
Han Yu ◽  
Siwei Luo ◽  
Zhen Wang ◽  
Zhenyu Qi ◽  
...  

This is the first time alkylthio chains are employed on Y6-like NFAs to achieve organic solar cells of power conversion efficiency higher than 16%.


2019 ◽  
Vol 7 (8) ◽  
pp. 3570-3576 ◽  
Author(s):  
Zhong Zheng ◽  
Shaoqing Zhang ◽  
Jianqiu Wang ◽  
Jianqi Zhang ◽  
Dongyang Zhang ◽  
...  

An inverted organic solar cell with finely tuned ZnO : PFN-Br electron transporting layer shows 13.8% power conversion efficiency and 78.8% fill factor.


Author(s):  
Chuang Yao ◽  
Yezi Yang ◽  
Lei Li ◽  
Maolin Bo ◽  
Cheng Peng ◽  
...  

Cyano-group (−C≡N) is an electron-withdrawing group, which has been widely used to construct high-performance fused-ring electron acceptors (FREAs). Benefiting from these FREAs, the power conversion efficiency of organic solar cells...


2014 ◽  
Vol 1 (9) ◽  
pp. 682-688 ◽  
Author(s):  
M. Alaaeddine ◽  
Q. Zhu ◽  
D. Fichou ◽  
G. Izzet ◽  
J. E. Rault ◽  
...  

Thick layers of the Wells–Dawson K6[P2W18O62] highly ordered were obtained and integrated at the anodic interface of organic solar cells to reach high power conversion efficiency.


2020 ◽  
Vol 8 (18) ◽  
pp. 6293-6298
Author(s):  
Cancan Jiao ◽  
Ziqi Guo ◽  
Binqiao Sun ◽  
Yuan-qiu-qiang Yi ◽  
Lingxian Meng ◽  
...  

An acceptor molecule with an asymmetric backbone, CC10, has been designed, which achieved a power conversion efficiency of 11.78%.


RSC Advances ◽  
2014 ◽  
Vol 4 (32) ◽  
pp. 16681-16685 ◽  
Author(s):  
O. Synooka ◽  
K.-R. Eberhardt ◽  
H. Hoppe

In this work, we demonstrate the successful replacement of a chlorinated solvent system based on a 1 : 1 mixture of chlorobenzene and ortho-dichlorobenzene with the chlorine-free solvent xylene, resulting in chlorine-free processing with a small amount of diiodooctane additive. In fact, the overall power conversion efficiency is improved from 6.71% for the chlorinated solvents to 7.15% for the chlorine-free solvent m-xylene.


2013 ◽  
Vol 378 ◽  
pp. 125-130
Author(s):  
Murtaza Imran

In contrast to the solar cells based on inorganic semiconductors, organic solar cells degrade during illumination. Therefore, the influence of the illumination time on the efficiencies of an organic solar cell is investigated which reveals that under steady-state illumination at 1 sun (100 mW/cm2) the efficiency of the solar cell with the structure of ITO/CuPc/C60/BCP/Ag degrade significantly over few hours. There are three efficiencies that are of interest; Fill Factor (FF), Power Conversion Efficiency (PCE), and Quantum Yield (QY). Fill factor decreased less than power conversion efficiency and quantum yield, indicating that the degradation in those efficiencies is caused by photon-induced damage to the molecules that did not lead to an increase in internal resistance.


Sign in / Sign up

Export Citation Format

Share Document