quantum yield
Recently Published Documents


TOTAL DOCUMENTS

3537
(FIVE YEARS 883)

H-INDEX

108
(FIVE YEARS 18)

Author(s):  
Maxim S. Molokeev ◽  
Binbin Su ◽  
Aleksandr S. Aleksandrovsky ◽  
Nicolay N. Golovnev ◽  
Mikhail E. Plyaskin ◽  
...  

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 459
Author(s):  
Anna Maj ◽  
Agnieszka Kudelko ◽  
Marcin Świątkowski

A series of new symmetrical s-tetrazine derivatives, coupled via a 1,4-phenylene linkage with a 4H-1,2,4-triazole ring, were obtained. The combination of these two rings in an extensively coupled system has significant potential applications, mainly in optoelectronics. The methodology used turned out to be useful regardless of the type of five-membered ring or the nature of the individual substituents. All the products were identified by spectroscopic methods, and the target compounds were tested for luminescent properties. This study showed that all the synthesized highly-conjugated triazoles exhibited luminescence; in particular, one derivative, 3,6-bis(4-(5-(4-methoxyphenyl)-4-phenyl-4H-1,2,4-triazol-3-yl)phenyl)-1,2,4,5-tetrazine (13b), showed strong fluorescence emission and ahigh quantum yield close to 1.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Jaehi Kim ◽  
Do Won Hwang ◽  
Heung Su Jung ◽  
Kyu Wan Kim ◽  
Xuan-Hung Pham ◽  
...  

Abstract Background Quantum dots (QDs) have been used as fluorophores in various imaging fields owing to their strong fluorescent intensity, high quantum yield (QY), and narrow emission bandwidth. However, the application of QDs to bio-imaging is limited because the QY of QDs decreases substantially during the surface modification step for bio-application. Results In this study, we fabricated alloy-typed core/shell CdSeZnS/ZnS quantum dots (alloy QDs) that showed higher quantum yield and stability during the surface modification for hydrophilization compared with conventional CdSe/CdS/ZnS multilayer quantum dots (MQDs). The structure of the alloy QDs was confirmed using time-of-flight medium-energy ion scattering spectroscopy. The alloy QDs exhibited strong fluorescence and a high QY of 98.0%. After hydrophilic surface modification, the alloy QDs exhibited a QY of 84.7%, which is 1.5 times higher than that of MQDs. The QY was 77.8% after the alloy QDs were conjugated with folic acid (FA). Alloy QDs and MQDs, after conjugation with FA, were successfully used for targeting human KB cells. The alloy QDs exhibited a stronger fluorescence signal than MQD; these signals were retained in the popliteal lymph node area for 24 h. Conclusion The alloy QDs maintained a higher QY in hydrophilization for biological applications than MQDs. And also, alloy QDs showed the potential as nanoprobes for highly sensitive bioimaging analysis. Graphical Abstract


Author(s):  
Xiaodong Peng ◽  
Cheng Yan ◽  
Fengjun Chun ◽  
Wen Li ◽  
Xiankan Zeng ◽  
...  

2022 ◽  
Vol 2 (3) ◽  
pp. 196-206
Author(s):  
W M U D Wijethunga ◽  
L S H Jayasooriya ◽  
S M J C Subasinghe ◽  
H M P C Kumarihami ◽  
C K Beneragama

Chlorophyll fluorescence (ChlF) is a non-invasive technique that can be potentially used in postharvest research to gain useful information on early responses to postharvest stresses. This study was conducted to validate the application of ChlF transient analysis in determining the postharvest changes in photosynthetic apparatus in three ornamental foliage species, i.e., Cordyline fruticosa ‘Willy’s Gold’ and ‘Rubra’, Dracaena sanderiana ‘White’, and Nephrolepis exaltata. Salicylic acid (100 and 300 mg·L−1), glucose (10 g·L−1), and their combinations were used as holding solutions with control treatment (distilled water) at room temperature (25±2°C). Vase life was evaluated using OJIP analysis. OJIP parameters, i.e., specific energy fluxes per reaction center (ABS/RC, TR/RC, ET/RC, and DI/RC), flux ratios (maximum quantum yield of primary photochemistry-φPo), electron transport efficiency (ψo), and quantum yield of electron transport (φEo), and performance index (PI) were recorded every other day, using a fluorometer (FluorPen 100). Leaf chlorophyll contents of all species and anthocyanin contents of two cordyline cultivars were determined. Data were subjected to ANOVA in a completely randomized design. Mean separation was done by DMRT (p ≤ 0.05). Clear variations in ChlF were observed in every foliage species with the time. OJIP analysis showed species-depended variations. The higher ABS/RC and DI/RC were recorded for D. sanderiana and N. exaltata compared to the PI of those species. At the end of the experiment, the chlorophyll contents were decreased, while anthocyanin contents were increased. Consequently, chlorophyll fluorescence changes in photosynthetic apparatus can be used for the prediction of the postharvest stresses and longevity of cut foliage.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 108
Author(s):  
Denis V. Yanykin ◽  
Dmitriy E. Burmistrov ◽  
Alexander V. Simakin ◽  
Julia A. Ermakova ◽  
Sergey V. Gudkov

The influence of light conversion induced by glasses coated with up-converting luminescent nanoparticles on Solanum lycopersicum cultivation was studied. Nanoparticles of Sr0.46Ba0.50Yb0.02Er0.02F2.04 solid solution were used as the up-converting luminophore. These nanoparticles were able to transform IR radiation into visible light (λem = 660 nm with minor peaks at 545 nm and 525 nm). By applying the “variable” chlorophyll fluorescence (ΔF), it was shown that the cultivation of tomatoes under the photoconversion glasses stimulated changes in the rate of plant adaptation to ultraviolet radiation. The restoration time of values of effective quantum yield of photosystem II photochemical reactions and photochemical quenching of chlorophyll fluorescence (reflecting disappearance of imbalance between photosynthetic electron transport and the utilization of NADPH) was reduced from three weeks to three days in the case of control and photoconversion films, respectively. As a result, plants grown under photoconversion glass had an increased leaf number (12.5%), total leaf area (33%), stem length (35%) and chlorophyll content in the leaves (two-fold). It is assumed that an increase in the proportion of red light in the growing spectrum has a positive effect on photosynthetic activity and plant growth.


Nanoscale ◽  
2022 ◽  
Author(s):  
Jean de Souza Matias ◽  
Katarzyna Komolibus ◽  
Sanathana Konugolu Venkata Sekar ◽  
Stefan Andersson-Engels

The presented work uses a discrete strategy of beam profile compensation to evaluate the local internal quantum yield (iQY) of upconverting nanoparticles (UCNPs) at the pixel level of the beam...


Author(s):  
Zitong Wei ◽  
Wenyi Lu ◽  
Ximin Wang ◽  
Jiping Ni ◽  
Umme Hani Prova ◽  
...  

Carbon dots (CDs), a relatively new kind of fluorescent nanomaterials superior to other contributors of carbon allotrope due to their excellent biocompatibility, controllable photoluminescence, high quantum yield (QY), unique electronic...


Sign in / Sign up

Export Citation Format

Share Document