scholarly journals Combining the converse humidity/resistance response behaviors of rGO films for flexible logic devices

2017 ◽  
Vol 5 (15) ◽  
pp. 3848-3854 ◽  
Author(s):  
Yanlong Tai ◽  
Tushar Kanti Bera ◽  
Gilles Lubineau ◽  
Zhenguo Yang

We report the fabrication of a series of flexible logical devices based on the converse humidity/resistance response of rGO films.

2019 ◽  
Vol 35 (1) ◽  
pp. 126-136 ◽  
Author(s):  
Tour Liu ◽  
Tian Lan ◽  
Tao Xin

Abstract. Random response is a very common aberrant response behavior in personality tests and may negatively affect the reliability, validity, or other analytical aspects of psychological assessment. Typically, researchers use a single person-fit index to identify random responses. This study recommends a three-step person-fit analysis procedure. Unlike the typical single person-fit methods, the three-step procedure identifies both global misfit and local misfit individuals using different person-fit indices. This procedure was able to identify more local misfit individuals than single-index method, and a graphical method was used to visualize those particular items in which random response behaviors appear. This method may be useful to researchers in that it will provide them with more information about response behaviors, allowing better evaluation of scale administration and development of more plausible explanations. Real data were used in this study instead of simulation data. In order to create real random responses, an experimental test administration was designed. Four different random response samples were produced using this experimental system.


Author(s):  
M.K. Dawood ◽  
C. Chen ◽  
P.K. Tan ◽  
S. James ◽  
P.S. Limin ◽  
...  

Abstract In this work, we present two case studies on the utilization of advanced nanoprobing on 20nm logic devices at contact layer to identify the root cause of scan logic failures. In both cases, conventional failure analysis followed by inspection of passive voltage contrast (PVC) failed to identify any abnormality in the devices. Technology advancement makes identifying failure mechanisms increasingly more challenging using conventional methods of physical failure analysis (PFA). Almost all PFA cases for 20nm technology node devices and beyond require Transmission Electron Microscopy (TEM) analysis. Before TEM analysis can be performed, fault isolation is required to correctly determine the precise failing location. Isolated transistor probing was performed on the suspected logic NMOS and PMOS transistors to identify the failing transistors for TEM analysis. In this paper, nanoprobing was used to isolate the failing transistor of a logic cell. Nanoprobing revealed anomalies between the drain and bulk junction which was found to be due to contact gouging of different severities.


2015 ◽  
Vol 28 (6) ◽  
pp. 727-735 ◽  
Author(s):  
Andrew R. Russell ◽  
Tom Ashfield ◽  
Roger W. Innes

The Pseudomonas syringae effector AvrB triggers a hypersensitive resistance response in Arabidopsis and soybean plants expressing the disease resistance (R) proteins RPM1 and Rpg1b, respectively. In Arabidopsis, AvrB induces RPM1-interacting protein kinase (RIPK) to phosphorylate a disease regulator known as RIN4, which subsequently activates RPM1-mediated defenses. Here, we show that AvrPphB can suppress activation of RPM1 by AvrB and this suppression is correlated with the cleavage of RIPK by AvrPphB. Significantly, AvrPphB does not suppress activation of RPM1 by AvrRpm1, suggesting that RIPK is not required for AvrRpm1-induced modification of RIN4. This observation indicates that AvrB and AvrRpm1 recognition is mediated by different mechanisms in Arabidopsis, despite their recognition being determined by a single R protein. Moreover, AvrB recognition but not AvrRpm1 recognition is suppressed by AvrPphB in soybean, suggesting that AvrB recognition requires a similar molecular mechanism in soybean and Arabidopsis. In support of this, we found that phosphodeficient mutations in the soybean GmRIN4a and GmRIN4b proteins are sufficient to block Rpg1b-mediated hypersensitive response in transient assays in Nicotiana glutinosa. Taken together, our results indicate that AvrB and AvrPphB target a conserved defense signaling pathway in Arabidopsis and soybean that includes RIPK and RIN4.


2021 ◽  
pp. 2000246
Author(s):  
Dong-Dong Li ◽  
Tian-Ying Liu ◽  
Jiao Ye ◽  
Lei Sheng ◽  
Jing Liu

2021 ◽  
Vol 56 (15) ◽  
pp. 9196-9208
Author(s):  
Piotr Borysiuk ◽  
Piotr Boruszewski ◽  
Radosław Auriga ◽  
Leszek Danecki ◽  
Alicja Auriga ◽  
...  

AbstractIn this study, wood plastic composites (WPC) made of poly(lactic acid) PLA and a bark-filler were manufactured. Two degrees of bark comminution (10–35 mesh and over 35 mesh) and varied content of bark (40, 50 and 60%) were investigated. The studied panels were compared with analogically manufactured HDPE boards. The manufacture of composites involved two stages: at first, WPC granules with the appropriate formulation were produced using the extruder (temperatures in individual extruder sections were 170–180 °C) and crushing using a hammer mill after cooling the extruded composite; secondly, the obtained granulate was used to produce boards with nominal dimensions of 300 × 300 × 2.5 mm3 by flat pressing in a mold, using a single daylight press at a temperature 200 °C. The study proved that comminuted bark can be applied as a filler in PLA composites. However, an increase in bark content decreased mechanical properties (MOR, MOE) and deteriorated humidity resistance (high TS and WA) of the panels. Along with the increase in bark content, an increase in the contact angle of the composite surfaces and a decrease in the total surface energy were noted. It was also found that PLA composites have higher strength parameters and lower moisture resistance compared to HDPE composites with the same bark content. Graphical abstract


2020 ◽  
pp. 128036
Author(s):  
Xin-Yu Chen ◽  
Junying Zhang ◽  
Kun-Rong Du ◽  
Qing Xie ◽  
Zhi-Ling Hou

Author(s):  
Feng Wen ◽  
Joseph Yuan ◽  
Kaushini S. Wickramasinghe ◽  
William Mayer ◽  
Javad Shabani ◽  
...  

Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Uasmim Lira Zidanes ◽  
Matheus Cordazzo Dias ◽  
Mário Sérgio Lorenço ◽  
Elesandra da Silva Araujo ◽  
Maryella Júnnia Ferreira e Silva ◽  
...  

AbstractAdhesives based on vegetable tannins are already a reality in the market. However, their use is still limited due to their low mechanical resistance and weak humidity resistance. Cellulose nanofibrils (CNFs) are being used as reinforcing materials in various composites, resulting in an improvement of mechanical proprieties in general. The objective of this work was to evaluate the incorporation of CNFs in adhesives made of tannins obtained from the Angico tree (Anadenanthera peregrine). Concentrations of nanofibrils at 1, 5, and 10% were added to the adhesives on a dry basis. Tests of viscosity, pH, solids content, and gel time were performed to determine the physical proprieties of the adhesives. The Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Raman spectra measurements were also determined to understand the interaction between tannins and CNFs. Thermogravimetric analyses (TGA) were carried out to determine the thermal resistance of the composite. The FTIR and Raman characterization identified some differences in the peaks in the chemical composition of the adhesives with different percentages of CNFs. The adhesives showed no different decomposition in the thermogravimetric analyses. The shear strength in the glue line of the adhesive with 5% of CNFs in Toona ciliata woods was determined. Among all the adhesives analyzed, the one with 5% of CNFs produced an improvement in the mechanical resistance and humidity resistance on the glue line.


Sign in / Sign up

Export Citation Format

Share Document