Polydopamine-wrapped, silicon nanoparticle-impregnated macroporous CNT particles: rational design of high-performance lithium-ion battery anodes

2019 ◽  
Vol 55 (3) ◽  
pp. 361-364 ◽  
Author(s):  
Donghee Gueon ◽  
Jun Hyuk Moon

We report simple yet rationally designed, polydopamine-wrapped, silicon nanoparticle-impregnated macroporous CNT particles for high-capacity lithium-ion batteries.

Author(s):  
Fei Zhang ◽  
Tao Jing ◽  
Shao Cai ◽  
Mingsen Deng ◽  
Dongmei Liang ◽  
...  

Rational design of high-performance anode materials is of paramount importance for developing rechargeable lithium ion batteries (LIBs) and sodium ion batteries (SIBs). In this work, ZrC2 monolayer is predicted by...


RSC Advances ◽  
2016 ◽  
Vol 6 (76) ◽  
pp. 72008-72014 ◽  
Author(s):  
Na Feng ◽  
Xiaolei Sun ◽  
Hongwei Yue ◽  
Deyan He

Uniform-sized Ni embedded NiO nanospheres exhibit a high capacity of 453 mA h g−1 (12C) and 800 mA h g−1 (0.2C) after 300 cycles.


2015 ◽  
Vol 3 (7) ◽  
pp. 3522-3528 ◽  
Author(s):  
Xinghua Chang ◽  
Wei Li ◽  
Junfeng Yang ◽  
Li Xu ◽  
Jie Zheng ◽  
...  

One step plasma deposited Si/C nanocomposites as high capacity, high stability lithium ion battery anodes.


RSC Advances ◽  
2015 ◽  
Vol 5 (117) ◽  
pp. 96660-96664 ◽  
Author(s):  
Sheng Han ◽  
Yani Ai ◽  
Yanping Tang ◽  
Jianzhong Jiang ◽  
Dongqing Wu

Carbonized polyaniline coupled molybdenum disulfide and graphene show excellent electrochemical performances as an anode material for lithium ion batteries.


2014 ◽  
Vol 6 (9) ◽  
pp. 6497-6503 ◽  
Author(s):  
Shan Fang ◽  
Laifa Shen ◽  
Guiyin Xu ◽  
Ping Nie ◽  
Jie Wang ◽  
...  

2021 ◽  
Author(s):  
Bitao Su ◽  
Ming Zhong ◽  
Lingling Li ◽  
Kun Zhao ◽  
Hui Peng ◽  
...  

Searching for novel alternatives to traditional graphite anode for high performance lithium-ion batteries is of great significance, which, however, faces many challenges. In this work, a pyrolysis coupled with selenization...


CrystEngComm ◽  
2015 ◽  
Vol 17 (48) ◽  
pp. 9336-9347 ◽  
Author(s):  
Jingyun Ma ◽  
Longwei Yin ◽  
Tairu Ge

We report on the rational design and synthesis of three dimensional (3D) Cu-doped NiO architectures with an adjustable chemical component, surface area, and hierarchically porous structure as anodes for lithium ion battery.


Sign in / Sign up

Export Citation Format

Share Document