long cycle life
Recently Published Documents


TOTAL DOCUMENTS

807
(FIVE YEARS 328)

H-INDEX

84
(FIVE YEARS 24)

Author(s):  
Jiantao Tang ◽  
Leidanyang Wang ◽  
Changhao Tian ◽  
Chunguang Chen ◽  
Tao Huang ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhu Cheng ◽  
Hui Pan ◽  
Fan Li ◽  
Chun Duan ◽  
Hang Liu ◽  
...  

AbstractRechargeable Li-I2 battery has attracted considerable attentions due to its high theoretical capacity, low cost and environment-friendliness. Dissolution of polyiodides are required to facilitate the electrochemical redox reaction of the I2 cathode, which would lead to a harmful shuttle effect. All-solid-state Li-I2 battery totally avoids the polyiodides shuttle in a liquid system. However, the insoluble discharge product at the conventional solid interface results in a sluggish electrochemical reaction and poor rechargeability. In this work, by adopting a well-designed hybrid electrolyte composed of a dispersion layer and a blocking layer, we successfully promote a new polyiodides chemistry and localize the polyiodides dissolution within a limited space near the cathode. Owing to this confined dissolution strategy, a rechargeable and highly reversible all-solid-state Li-I2 battery is demonstrated and shows a long-term life of over 9000 cycles at 1C with a capacity retention of 84.1%.


2022 ◽  
Vol 30 (1) ◽  
pp. 351-376
Author(s):  
Thilageshwaran Subramaniam ◽  
Mohamed Ansari Mohamed Nainar ◽  
Noor Afeefah Nordin

Supercapacitors have gained much attention in recent years due to their promising characteristics, such as high specific capacitance, high power density, long cycle life, and environment-friendly nature. Usage of natural sources for activated carbon synthesis is a major focus by many researchers worldwide for discovering a replacement of existing supercapacitors. This review summarizes the methods used to synthesize activated carbon (AC) from various natural fiber, their physical and electrochemical characteristics, and the improvement of supercapacitor electrode performance. Previous research studies indicate the practicability of activated carbon derived from various natural fibers with superior electrochemical properties. The effect of activating reagents and temperature on the electrochemical performance for supercapacitor applications are also highlighted in this paper. Since the nature of activated carbon from fibers and its synthesizing methods would result in different properties, the Cyclic Voltammetry (CV) study is also thoroughly discussed on the specific capacitance together with charge/discharge test to observe the capacitance retention after several cycles. Finally, a detailed approach of converting biowaste materials to activated carbon for energy storage applications with environmental concerns is explored.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 329
Author(s):  
Apurba Ray ◽  
Jenny Roth ◽  
Bilge Saruhan

The rapidly developing demand for lightweight portable electronics has accelerated advanced research on self-powered microsystems (SPMs) for peak power energy storage (ESs). In recent years, there has been, in this regard, a huge research interest in micro-supercapacitors for microelectronics application over micro-batteries due to their advantages of fast charge–discharge rate, high power density and long cycle-life. In this work, the optimization and fabrication of micro-supercapacitors (MSCs) by means of laser-induced interdigital structured graphene electrodes (LIG) has been reported. The flexible and scalable MSCs are fabricated by CO2-laser structuring of polyimide-based Kapton ® HN foils at ambient temperature yielding interdigital LIG-electrodes and using polymer gel electrolyte (PGE) produced by polypropylene carbonate (PPC) embedded ionic liquid of 1-ethyl-3-methyl-imidazolium-trifluoromethansulphonate [EMIM][OTf]. This MSC exhibits a wide stable potential window up to 2.0 V, offering an areal capacitance of 1.75 mF/cm2 at a scan rate of 5.0 mV/s resulting in an energy density (Ea) of 0.256 µWh/cm2 @ 0.03 mA/cm2 and power density (Pa) of 0.11 mW/cm2 @0.1 mA/cm2. Overall electrochemical performance of this LIG/PGE-MSC is rounded with a good cyclic stability up to 10,000 cycles demonstrating its potential in terms of peak energy storage ability compared to the current thin film micro-supercapacitors.


Author(s):  
Zhengyun Wang ◽  
Yanyu Zhong ◽  
Nan Chenhui Wei ◽  
Lipei Jiang ◽  
Hongfang Liu

Abstract Supercapacitors as a class of energy storage devices possess high power density, outstanding reversibility and long cycle life. The development of innovative electrode materials and unconventional configurations determine the successful operation of supercapacitors. Owing to controllable porous structure and unique electrochemical behavior, great efforts have been devoted to designing and fabricating innovative metal-organic frameworks (MOFs) based supercapacitors. In this review, recent developments in MOFs related supercapacitors electrodes are summarized. Furthermore, the advances in MOFs composites for supercapactiors application including pristine MOFs, MOFs composites and MOFs-derived composites are systematically discussed by integrating charge storing principle. Finally, future prospects and opportunities in the design of MOFs related electrodes are also delineated.


Nature Energy ◽  
2022 ◽  
Author(s):  
Laidong Zhou ◽  
Tong-Tong Zuo ◽  
Chun Yuen Kwok ◽  
Se Young Kim ◽  
Abdeljalil Assoud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document