Rotational dependence of the branching ratios and fragment angular distributions for the photodissociation of 12C16O in the Rydberg 4p(2) and 5p(0) complex region (92.84–93.37 nm)

2019 ◽  
Vol 21 (26) ◽  
pp. 14376-14386 ◽  
Author(s):  
Pan Jiang ◽  
Xiaoping Chi ◽  
Wenke Qi ◽  
Qihe Zhu ◽  
Min Cheng ◽  
...  

Various patterns of rotational dependence for the photodissociation branching ratios and irregular angular distributions of the photofragments have been observed.

1971 ◽  
Vol 49 (4) ◽  
pp. 467-474 ◽  
Author(s):  
G. J. McCallum ◽  
R. J. Sparks ◽  
G. E. Coote ◽  
K. P. Pohl

The decay of the 3.696 MeV level in 25Al has been studied by means of the 24Mg(p,γ)25Al reaction at the 1.49 MeV resonance. Gamma-ray branching ratios, direct angular distributions, and lifetimes determined by the Doppler shift attenuation method are reported.


1972 ◽  
Vol 50 (20) ◽  
pp. 2428-2443 ◽  
Author(s):  
D. W. O. Rogers ◽  
R. P. Beukens ◽  
W. T. Diamond

Using the 15N(α,γ)19F reaction, the properties of 6 levels between 5.3 and 6.2 MeV in 19F have been studied. In conjunction with previously reported restrictions on spins for these levels, measurements of branching ratios, radiative widths, and angular distributions have been used to make the following spin–parity assignments; 5618 keV, 3/2−; 5938 keV, 1/2+; 6070 keV, 7/2+; 6088 keV, 3/2−; 6160 keV, 7/2−. The properties of these levels and that at 5336 keV have been compared in detail to the various shell model calculations done for 19F. The properties of the third Jπ = 7/2+ level at 6.07 MeV can be used to clear up some of the confusion caused by the first two Jπ = 7/2+ levels in 19F and the properties of the Jπ = 3/2− levels confirm the fact that the weak coupling model does not explain the negative parity states outside the K = 1/2− band.


Sign in / Sign up

Export Citation Format

Share Document