Theoretical studies on Rh(iii)-catalyzed regioselective C–H bond cyanation of indole and indoline

2019 ◽  
Vol 48 (1) ◽  
pp. 168-175 ◽  
Author(s):  
Chao Deng ◽  
Yingxin Sun ◽  
Yi Ren ◽  
Weihua Zhang

Density functional theory calculations were carried out to study the reaction mechanism of the Rh(iii)-catalyzed regioselective C–H cyanation of indole and indoline with N-cyano-N-phenyl-para-methylbenzenesulfonamide (NCTS).

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1663
Author(s):  
Laixing Luo ◽  
Xing Zheng ◽  
Jianye Wang ◽  
Wu Qin ◽  
Xianbin Xiao ◽  
...  

Biomass chemical looping gasification (CLG) is a novel gasification technology for hydrogen production, where the oxygen carrier (OC) transfers lattice oxygen to catalytically oxidize fuel into syngas. However, the OC is gradually reduced, showing different reaction activities in the CLG process. Fully understanding the CLG reaction mechanism of fuel molecules on perfect and reduced OC surfaces is necessary, for which the CLG of ethanol using Fe2O3 as the OC was introduced as the probe reaction to perform density functional theory calculations to reveal the decomposition mechanism of ethanol into the synthesis gas (including H2, CH4, ethylene, formaldehyde, acetaldehyde, and CO) on perfect and reduced Fe2O3(001) surfaces. When Fe2O3(001) is reduced to FeO0.375(001), the calculated barrier energy decreases and then increases again, suggesting that the reduction state around FeO(001) favors the catalytic decomposition of ethanol to produce hydrogen, which proves that the degree of reduction has an important effect on the CLG reaction.


2020 ◽  
Vol 44 (5) ◽  
pp. 1254-1264
Author(s):  
Shaya AL-RAQA ◽  
İpek ÖMEROĞLU ◽  
Doğan ERBAHAR ◽  
Mahmut DURMUŞ

Phenyl-4,4-di(3,6-dibutoxyphthalonitrile) (3) was synthesized by the reaction of 1,4-phenylenebisboronic acid (1) and 4-bromo-3,6-dibutoxyphthalonitrile (2), using Suzuki cross-coupling reaction. The newly synthesized compound (3) was characterized by FT-IR, MALDI-MS, ESI-MS, 1H-NMR, 13C-NMR, and 13C-DEPT-135-NMR. The fluorescence property of phenyl-4,4-di(3,6- dibutoxyphthalonitrile) (3) towards various metal ions was investigated by fluorescence spectroscopy, and it was observed thatthe compound (3) displayed a significantly ‘turn-off’ response to Fe3+, which was referred to 1:2 complex formation between ligand (3) and Fe3+. The compound was also studied via density functional theory calculations revealing the interaction mechanism of the molecule with Fe3+ ions.


2007 ◽  
Vol 06 (01) ◽  
pp. 1-12 ◽  
Author(s):  
JIAN-HUA XU ◽  
LAI-CAI LI ◽  
YAN ZHENG ◽  
JUN-LING LIU ◽  
XIN WANG

The reaction mechanisms of HNCS with CH 2 CH radical have been investigated by density functional theory (DFT). The geometries and harmonic frequencies of the reactants, intermediates, transition states and products have been calculated at the B3LYP/6-311++G(d,p) level. The results show that the reaction is very complicated. Nine possible reaction pathways were identified. The results show that the most feasible reaction channel is the hydrogen-transfer pathway CH 2 CH + HNCS → IMA1 → TSA1 → CH 2 CHH + NCS . The pathway VIC C-S addition channel ( CH 2 CH + HNCS → TSD5 → IMD4 → TSD9 → CH 2 CHS + CNH ) can also occur easily. Ethene and radical NCS is the main product of the studied reaction, and product P8 ( CH 2 CHS and CNH ) may also be observed. Compared with our previous study on the reaction HNCS + CH 2 CH , the present reaction is easier to proceed.


2019 ◽  
Vol 48 (25) ◽  
pp. 9181-9186 ◽  
Author(s):  
Chao Deng ◽  
Po Hu ◽  
YouJia Wang ◽  
Shaowei Wang ◽  
Weihua Zhang

The reaction mechanism of the Ru(ii)-catalyzed regioselective C–H allylation of indoles with allyl alcohols has been studied by density functional theory (DFT) calculations.


2010 ◽  
Vol 55 (27) ◽  
pp. 7975-7981 ◽  
Author(s):  
Vladimir Tripković ◽  
Egill Skúlason ◽  
Samira Siahrostami ◽  
Jens K. Nørskov ◽  
Jan Rossmeisl

Sign in / Sign up

Export Citation Format

Share Document