Emerging investigator series: inhibition and recovery of anaerobic granular sludge performance in response to short-term polystyrene nanoparticle exposure

2018 ◽  
Vol 4 (12) ◽  
pp. 1902-1911 ◽  
Author(s):  
Yue Feng ◽  
Li-Juan Feng ◽  
Shu-Chang Liu ◽  
Jian-Lu Duan ◽  
Yi-Bing Zhang ◽  
...  

Microbial communities and methanogenic genes are main reasons for AGS performance recovery from PS-NPs exposure.

2018 ◽  
Vol 76 (3) ◽  
pp. 648-659 ◽  
Author(s):  
Taotao Zeng ◽  
Shiqi Zhang ◽  
Xiang Gao ◽  
Guohua Wang ◽  
Piet N. L. Lens ◽  
...  

2012 ◽  
Vol 66 (7) ◽  
pp. 1483-1490 ◽  
Author(s):  
Luca Alibardi ◽  
Lorenzo Favaro ◽  
Maria Cristina Lavagnolo ◽  
Marina Basaglia ◽  
Sergio Casella

Dark fermentation shares many features with anaerobic digestion with the exception that to maximize hydrogen production, methanogens and hydrogen-consuming bacteria should be inhibited. Heat treatment is widely applied as an inoculum pre-treatment due to its effectiveness in inhibiting methanogenic microflora but it may not exclusively select for hydrogen-producing bacteria. This work evaluated the effects of heat treatment on microbial viability and structure of anaerobic granular sludge. Heat treatment was carried out on granular sludge at 100 °C with four residence times (0.5, 1, 2 and 4 h). Hydrogen production of treated sludges was studied from glucose by means of batch test at different pH values. Results indicated that each heat treatment strongly influenced the granular sludge resulting in microbial communities having different hydrogen productions. The highest hydrogen yields (2.14 moles of hydrogen per mole of glucose) were obtained at pH 5.5 using the sludge treated for 4 h characterized by the lowest CFU concentration (2.3 × 103CFU/g sludge). This study demonstrated that heat treatment should be carefully defined according to the structure of the sludge microbial community, allowing the selection of highly efficient hydrogen-producing microbes.


1994 ◽  
Vol 29 (4) ◽  
pp. 581-598
Author(s):  
C.F. Shew ◽  
N. Kosaric

Abstract Toxicity of sulfite (Na2SO3) and cadmium (CdCl2) ions to anaerobic granular sludge was investigated in 1.2 litre bench-scale upflow anaerobic sludge blanket (UASB) reactors during process acclimation and shock load conditions. Minimal sulfite toxicity was observed under gradual and shock load conditions at sulfite concentrations of up to 1000 mg S/L if proper acclimation was allowed to occur. No long-term toxic effects were observed although the COD digestion rate was temporarily inhibited by shock load of sulfite. Scanning electron micrographs indicated that more sulfate-reducing bacteria were present in the granules developed in the reactors with sulfite supplement although rod-shaped Methanosaeta-like bacteria were still dominant. High bacterial growth rate was observed in the reactors which were supplied with the feed containing sulfite. The COD digestion rate was inhibited at a cadmium loading rate of 2.4 g Cd per day under both acclimation and shock load conditions. Acclimation did not seem to improve the bacteria to tolerate the toxicity of cadmium. The concentration of free cadmium was very low in the reactors under normal conditions, but increased rapidly when the COD digestion in the reactors ceased. The bacteria could not be reactivated after inhibited by cadmium. When reactors were operated at low specific COD loading rates, more inorganic precipitates were formed inside the granules which consequently settled faster.


2020 ◽  
Vol 159 ◽  
pp. 107575
Author(s):  
Leire Caizán-Juanarena ◽  
Annemiek ter Heijne ◽  
Jan Weijma ◽  
Doekle Yntema ◽  
Diego A. Suárez-Zuluaga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document