granular sludge
Recently Published Documents


TOTAL DOCUMENTS

2080
(FIVE YEARS 668)

H-INDEX

81
(FIVE YEARS 17)

2022 ◽  
Vol 45 ◽  
pp. 102529
Author(s):  
Fernanda Cunha Maia ◽  
Rodrigo de Freitas Bueno ◽  
Fábio Campos ◽  
Roque Passos Piveli

2022 ◽  
Vol 303 ◽  
pp. 114150
Author(s):  
Laila Dina Amalia Purba ◽  
Jauharah Md Khudzari ◽  
Koji Iwamoto ◽  
Shaza Eva Mohamad ◽  
Ali Yuzir ◽  
...  

Author(s):  
Edina Klein ◽  
Janek Weiler ◽  
Michael Wagner ◽  
Minja Čelikić ◽  
Christof M. Niemeyer ◽  
...  

Abstract Wastewater treatment using aerobic granular sludge has gained increasing interest due to its advantages compared to conventional activated sludge. The technology allows simultaneous removal of organic carbon, nitrogen, and phosphorus in a single reactor system and is independent of space-intensive settling tanks. However, due to the microscale, an analysis of processes and microbial population along the radius of granules is challenging. Here, we introduce a model system for aerobic granular sludge on a small scale by using a machine-assisted microfluidic cultivation platform. With an implemented logic module that controls solenoid valves, we realized alternating oxic hunger and anoxic feeding phases for the biofilms growing within. Sampling during ongoing anoxic cultivation directly from the cultivation channel was achieved with a robotic sampling device. Analysis of the biofilms was conducted using optical coherence tomography, fluorescence in situ hybridization, and amplicon sequencing. Using this setup, it was possible to significantly enrich the percentage of polyphosphate-accumulating organisms (PAO) belonging to the family Rhodocyclaceae in the community compared to the starting inoculum. With the aid of this miniature model system, it is now possible to investigate the influence of a multitude of process parameters in a highly parallel way to understand and efficiently optimize aerobic granular sludge-based wastewater treatment systems.Key points• Development of a microfluidic model to study EBPR.• Feast-famine regime enriches polyphosphate-accumulating organisms (PAOs).• Microfluidics replace sequencing batch reactors for aerobic granular sludge research.


2022 ◽  
Author(s):  
Hazlami Fikri Basri ◽  
Aznah Nor Anuar ◽  
Mohd Hakim Abdul Halim

Abstract Aerobic granular sludge (AGS) technology is a promising biological method for modern wastewater treatment. However, granulation time have become a major issue for the application of AGS technology especially in low strength wastewater. Recent studies on granulation are focusing towards rapid start-up granulation process. Diatomite, a friable light-coloured sedimentary rock was introduces in this study to enhanced the granules formation. This study highlight the effect of diatomite towards the microbial community during the transformation of seed sludge until development of granules. DNA extraction and Metagenomic analysis was conducted with three samples (seed sludge, control AGS, AGS diatomite) to compare the microbial community. The microbial community analysis revealed the alpha diversity, phylum and class level, and the abundance of EPS producing bacteria of each bacteria samples respectively. Diatomite has a significant influence towards the microbial diversity (High Shannon index alpha diversity). Also, diatomite promotes the abundance of functional bacteria especially EPS producing bacteria, which seen as a crucial elements in granulation process.


Sign in / Sign up

Export Citation Format

Share Document