A double-helix-structured triboelectric nanogenerator enhanced with positive charge traps for self-powered temperature sensing and smart-home control systems

Nanoscale ◽  
2018 ◽  
Vol 10 (42) ◽  
pp. 19781-19790 ◽  
Author(s):  
Lingxiao Gao ◽  
Donglin Hu ◽  
Mengke Qi ◽  
Jia Gong ◽  
Hong Zhou ◽  
...  

Triboelectric nanogenerators (TENGs) have been in spotlight for their excellent capability to drive miniature electronics.

2022 ◽  
Author(s):  
Dhiraj Bharti ◽  
Sushmitha Veeralingam ◽  
Sushmee Badhulika

Obtaining sustainable, high output power supply from triboelectric nanogenerators still remains a major issue which restricts their widespread use in self-powered electronic applications. In this work, an ultra-high performance, non-toxic,...


Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 656 ◽  
Author(s):  
Hee Hwang ◽  
Younghoon Lee ◽  
Choongyeop Lee ◽  
Youngsuk Nam ◽  
Jinhyoung Park ◽  
...  

The oxidation of metal microparticles (MPs) in a polymer film yields a mesoporous highly-deformable composite polymer for enhancing performance and creating a gapless structure of triboelectric nanogenerators (TENGs). This is a one-step scalable synthesis for developing large-scale, cost-effective, and light-weight mesoporous polymer composites. We demonstrate mesoporous aluminum oxide (Al2O3) polydimethylsiloxane (PDMS) composites with a nano-flake structure on the surface of Al2O3 MPs in pores. The porosity of mesoporous Al2O3-PDMS films reaches 71.35% as the concentration of Al MPs increases to 15%. As a result, the film capacitance is enhanced 1.8 times, and TENG output performance is 6.67-times greater at 33.3 kPa and 4 Hz. The pressure sensitivity of 6.71 V/kPa and 0.18 μA/kPa is determined under the pressure range of 5.5–33.3 kPa. Based on these structures, we apply mesoporous Al2O3-PDMS film to a gapless TENG structure and obtain a linear pressure sensitivity of 1.00 V/kPa and 0.02 μA/kPa, respectively. Finally, we demonstrate self-powered safety cushion sensors for monitoring human sitting position by using gapless TENGs, which are developed with a large-scale and highly-deformable mesoporous Al2O3-PDMS film with dimensions of 6 × 5 pixels (33 × 27 cm2).


Author(s):  
Saeed Ahmed Khan ◽  
Shamsuddin Lakho ◽  
Ahmed Ali ◽  
Abdul Qadir Rahimoon ◽  
Izhar Hussain Memon ◽  
...  

Most of the emerging electronic devices are wearable in nature. However, the frequent changing or charging the battery of all wearable devices is the big challenge. Interestingly, with those wearable devices that are directly associated with the human body, the body can be used in transferring or generating energy in a number of techniques. One technique is triboelectric nanogenerators (TENG). This chapter covers different applications where the human body is used as a triboelectric layer and as a sensor. Wearable TENG has been discussed in detail based on four basic modes that could be used to monitor the human health. In all the discussions, the main focus is to power the wearable healthcare internet of things (IoT) sensor through human body motion based on self-powered TENG. The IoT sensors-based wearable devices related to human body can be used to develop smart body temperature sensors, pressure sensors, smart textiles, and fitness tracking sensors.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kai Han ◽  
Jianjun Luo ◽  
Jian Chen ◽  
Baodong Chen ◽  
Liang Xu ◽  
...  

AbstractAmmonia synthesis using low-power consumption and eco-friendly methods has attracted increasing attention. Here, based on the Tesla turbine triboelectric nanogenerator (TENG), we designed a simple and effective self-powered ammonia synthesis system by N2 discharge. Under the driving of the simulated waste gas, the Tesla turbine TENG showed high rotation speed and high output. In addition, the performance of two Tesla turbine TENGs with different gas path connections was systematically investigated and discussed. A controllable series-parallel connection with the control of gas supply time was also proposed. Taking advantage of the intrinsic high voltage, corona discharge in a N2 atmosphere was simply realized by a Tesla turbine TENG. With the flow of N2, the generated high-energy plasma can immediately react with water molecules to directly produce ammonia. The self-powered system achieved a yield of 2.14 μg h−1 (0.126 μmol h−1) under ambient conditions, showing great potential for large-scale synthesis.


2020 ◽  
Vol 11 ◽  
pp. 1394-1401
Author(s):  
Liangyi Zhang ◽  
Huan Li ◽  
Yiyuan Xie ◽  
Jing Guo ◽  
Zhiyuan Zhu

Recently, there has been growing interest in triboelectric nanogenerators (TENGs) that can effectively convert various forms of mechanical energy input into electrical energy. In the present study, a novel Teflon/vitamin B1 powder based triboelectric nanogenerator (TVB-TENG) is proposed. Paper is utilized as a supporting platform for triboelectrification between a commercial Teflon tape and vitamin B1 powder. The measured open-circuit voltage was approximately 340 V. The TVB-TENG can be applied as a humidity sensor and exhibits a linear and reversible response to the relative humidity of the environment. Moreover, the change in relative humidity is also indicated by the change in luminosity of a set of light-emitting diodes (LEDs) integrated in the TVB-TENG system. The TVB-TENG proposed in this study illustrates a cost-effective method for portable power supply and sensing devices.


Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 532 ◽  
Author(s):  
Jin Lee ◽  
Jae Lee ◽  
Jeong Baik

Ever since a new energy harvesting technology, known as a triboelectric nanogenerator (TENG), was reported in 2012, the rapid development of device fabrication techniques and mechanical system designs have considerably made the instantaneous output power increase up to several tens of mW/cm2. With this innovative technology, a lot of researchers experimentally demonstrated that various portable/wearable devices could be operated without any external power. This article provides a comprehensive review of polyvinylidene fluoride (PVDF)-based polymers as effective dielectrics in TENGs for further increase of the output power to speed up commercialization of the TENGs, as well as the fundamental issues regarding the materials. In the end, we will also review PVDF-based sensors based on the triboelectric and piezoelectric effects of the PVDF polymers.


Nanoscale ◽  
2018 ◽  
Vol 10 (48) ◽  
pp. 23131-23140 ◽  
Author(s):  
Hao-Yang Mi ◽  
Xin Jing ◽  
Zhiyong Cai ◽  
Yuejun Liu ◽  
Lih-Sheng Turng ◽  
...  

A porous composite triboelectric nanogenerator (PCTENG) with excellent energy generation and sensing performances has been developed by introducing rabbit fur into a cellulose aerogel.


2017 ◽  
Vol 5 (24) ◽  
pp. 12252-12257 ◽  
Author(s):  
Meng Wang ◽  
Nan Zhang ◽  
Yingjie Tang ◽  
Heng Zhang ◽  
Chuan Ning ◽  
...  

A single-electrode triboelectric nanogenerator (S-TENG) based on sponge-like porous polytetrafluoroethylene (PTFE) thin films was developed.


Sign in / Sign up

Export Citation Format

Share Document