scholarly journals Blow-spun N-doped carbon fiber based high performance flexible lithium ion capacitors

RSC Advances ◽  
2020 ◽  
Vol 10 (17) ◽  
pp. 9833-9839
Author(s):  
Changzhen Zhan ◽  
Jianan Song ◽  
Xiaolong Ren ◽  
Yang Shen ◽  
Hui Wu ◽  
...  

Constructing flexible hybrid supercapacitors is a feasible way to achieve devices with high energy density, high power density and flexibility at the same time.

2015 ◽  
Vol 3 (42) ◽  
pp. 21277-21283 ◽  
Author(s):  
Shengyang Dong ◽  
Laifa Shen ◽  
Hongsen Li ◽  
Ping Nie ◽  
Yaoyao Zhu ◽  
...  

Pseudocapacitive behaviours of Na2Ti3O7@CNTs enhance the electrochemical performance of Na-ion capacitors with high energy density and high power density.


2016 ◽  
Vol 4 (23) ◽  
pp. 9002-9008 ◽  
Author(s):  
Ye Zhang ◽  
Yuhang Wang ◽  
Lie Wang ◽  
Chieh-Min Lo ◽  
Yang Zhao ◽  
...  

A fiber-shaped aqueous lithium ion battery is developed with ultrafast charge–discharge rates and high power density in addition to high energy density.


JOM ◽  
2017 ◽  
Vol 69 (9) ◽  
pp. 1484-1496 ◽  
Author(s):  
Jianlin Li ◽  
Zhijia Du ◽  
Rose E. Ruther ◽  
Seong Jin AN ◽  
Lamuel Abraham David ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3586
Author(s):  
Qi An ◽  
Xingru Zhao ◽  
Shuangfu Suo ◽  
Yuzhu Bai

Lithium-ion capacitors (LICs) have been widely explored for energy storage. Nevertheless, achieving good energy density, satisfactory power density, and stable cycle life is still challenging. For this study, we fabricated a novel LIC with a NiO-rGO composite as a negative material and commercial activated carbon (AC) as a positive material for energy storage. The NiO-rGO//AC system utilizes NiO nanoparticles uniformly distributed in rGO to achieve a high specific capacity (with a current density of 0.5 A g−1 and a charge capacity of 945.8 mA h g−1) and uses AC to provide a large specific surface area and adjustable pore structure, thereby achieving excellent electrochemical performance. In detail, the NiO-rGO//AC system (with a mass ratio of 1:3) can achieve a high energy density (98.15 W h kg−1), a high power density (10.94 kW kg−1), and a long cycle life (with 72.1% capacity retention after 10,000 cycles). This study outlines a new option for the manufacture of LIC devices that feature both high energy and high power densities.


2015 ◽  
Vol 51 (67) ◽  
pp. 13233-13236 ◽  
Author(s):  
Chang Yu ◽  
Changtai Zhao ◽  
Shaohong Liu ◽  
Xiaoming Fan ◽  
Juan Yang ◽  
...  

Polystyrene sphere-mediated ultrathin graphene sheet-assembled aerogels were configured, exhibiting high energy density and power density for Li–O2 batteries.


2015 ◽  
Vol 3 (38) ◽  
pp. 19545-19555 ◽  
Author(s):  
Huan Yi ◽  
Huanwen Wang ◽  
Yuting Jing ◽  
Tianquan Peng ◽  
Yiran Wang ◽  
...  

Asymmetric supercapacitors with CNT@nickel hydroxide nanosheet composites and 3-D graphene networks demonstrated a high energy density (∼44.0 W h kg−1) and high power density (∼16 kW kg−1) in aqueous KOH electrolyte.


2018 ◽  
Vol 6 ◽  
Author(s):  
Guiming Zhong ◽  
Huixin Chen ◽  
Xingkang Huang ◽  
Hongjun Yue ◽  
Canzhong Lu

2013 ◽  
Vol 240 ◽  
pp. 109-113 ◽  
Author(s):  
Xiaojun He ◽  
Pinghua Ling ◽  
Jieshan Qiu ◽  
Moxin Yu ◽  
Xiaoyong Zhang ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (12) ◽  
pp. 9950-9957 ◽  
Author(s):  
Liang Hao ◽  
Laifa Shen ◽  
Jie Wang ◽  
Yunling Xu ◽  
Xiaogang Zhang

We developed an asymmetric supercapacitor using NiCo2S4 nanotube arrays grown on carbon textile, achieving a high energy density (∼40.1 W h kg−1 at 451 W kg−1), a high power density (∼4725 W kg−1 at 21 W h kg−1) and excellent cyclability.


Sign in / Sign up

Export Citation Format

Share Document