scholarly journals Novel Lithium-Ion Capacitor Based on a NiO-rGO Composite

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3586
Author(s):  
Qi An ◽  
Xingru Zhao ◽  
Shuangfu Suo ◽  
Yuzhu Bai

Lithium-ion capacitors (LICs) have been widely explored for energy storage. Nevertheless, achieving good energy density, satisfactory power density, and stable cycle life is still challenging. For this study, we fabricated a novel LIC with a NiO-rGO composite as a negative material and commercial activated carbon (AC) as a positive material for energy storage. The NiO-rGO//AC system utilizes NiO nanoparticles uniformly distributed in rGO to achieve a high specific capacity (with a current density of 0.5 A g−1 and a charge capacity of 945.8 mA h g−1) and uses AC to provide a large specific surface area and adjustable pore structure, thereby achieving excellent electrochemical performance. In detail, the NiO-rGO//AC system (with a mass ratio of 1:3) can achieve a high energy density (98.15 W h kg−1), a high power density (10.94 kW kg−1), and a long cycle life (with 72.1% capacity retention after 10,000 cycles). This study outlines a new option for the manufacture of LIC devices that feature both high energy and high power densities.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Chen Li ◽  
Xiong Zhang ◽  
Kai Wang ◽  
Xianzhong Sun ◽  
Yanan Xu ◽  
...  

AbstractLithium-ion capacitors are envisaged as promising energy-storage devices to simultaneously achieve a large energy density and high-power output at quick charge and discharge rates. However, the mismatched kinetics between capacitive cathodes and faradaic anodes still hinder their practical application for high-power purposes. To tackle this problem, the electron and ion transport of both electrodes should be substantially improved by targeted structural design and controllable chemical doping. Herein, nitrogen-enriched graphene frameworks are prepared via a large-scale and ultrafast magnesiothermic combustion synthesis using CO2 and melamine as precursors, which exhibit a crosslinked porous structure, abundant functional groups and high electrical conductivity (10524 S m−1). The material essentially delivers upgraded kinetics due to enhanced ion diffusion and electron transport. Excellent capacities of 1361 mA h g−1 and 827 mA h g−1 can be achieved at current densities of 0.1 A g−1 and 3 A g−1, respectively, demonstrating its outstanding lithium storage performance at both low and high rates. Moreover, the lithium-ion capacitor based on these nitrogen-enriched graphene frameworks displays a high energy density of 151 Wh kg−1, and still retains 86 Wh kg−1 even at an ultrahigh power output of 49 kW kg−1. This study reveals an effective pathway to achieve synergistic kinetics in carbon electrode materials for achieving high-power lithium-ion capacitors.


RSC Advances ◽  
2020 ◽  
Vol 10 (17) ◽  
pp. 9833-9839
Author(s):  
Changzhen Zhan ◽  
Jianan Song ◽  
Xiaolong Ren ◽  
Yang Shen ◽  
Hui Wu ◽  
...  

Constructing flexible hybrid supercapacitors is a feasible way to achieve devices with high energy density, high power density and flexibility at the same time.


2020 ◽  
Vol 8 (27) ◽  
pp. 13443-13451 ◽  
Author(s):  
Ding Yuan ◽  
Yuhai Dou ◽  
Li Xu ◽  
Linping Yu ◽  
Ningyan Cheng ◽  
...  

Pseudocapacitive charge storage at the surface/interface of atomically thin mesoporous heterostructures is promising for achieving both high energy density and high power density in lithium-ion batteries (LIBs).


2016 ◽  
Vol 4 (23) ◽  
pp. 9002-9008 ◽  
Author(s):  
Ye Zhang ◽  
Yuhang Wang ◽  
Lie Wang ◽  
Chieh-Min Lo ◽  
Yang Zhao ◽  
...  

A fiber-shaped aqueous lithium ion battery is developed with ultrafast charge–discharge rates and high power density in addition to high energy density.


JOM ◽  
2017 ◽  
Vol 69 (9) ◽  
pp. 1484-1496 ◽  
Author(s):  
Jianlin Li ◽  
Zhijia Du ◽  
Rose E. Ruther ◽  
Seong Jin AN ◽  
Lamuel Abraham David ◽  
...  

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Renwei Lu ◽  
Xiaolong Ren ◽  
Chong Wang ◽  
Changzhen Zhan ◽  
Ding Nan ◽  
...  

Lithium-ion hybrid capacitors (LICs) are regarded as one of the most promising next generation energy storage devices. Commercial activated carbon materials with low cost and excellent cycling stability are widely used as cathode materials for LICs, however, their low energy density remains a significant challenge for the practical applications of LICs. Herein, Na0.76V6O15 nanobelts (NaVO) were prepared and combined with commercial activated carbon YP50D to form hybrid cathode materials. Credit to the synergism of its capacitive effect and diffusion-controlled faradaic effect, NaVO/C hybrid cathode displays both superior cyclability and enhanced capacity. LICs were assembled with the as-prepared NaVO/C hybrid cathode and artificial graphite anode which was pre-lithiated. Furthermore, 10-NaVO/C//AG LIC delivers a high energy density of 118.9 Wh kg−1 at a power density of 220.6 W kg−1 and retains 43.7 Wh kg−1 even at a high power density of 21,793.0 W kg−1. The LIC can also maintain long-term cycling stability with capacitance retention of approximately 70% after 5000 cycles at 1 A g−1. Accordingly, hybrid cathodes composed of commercial activated carbon and a small amount of high energy battery-type materials are expected to be a candidate for low-cost advanced LICs with both high energy density and power density.


2019 ◽  
Vol 7 (8) ◽  
pp. 4110-4118 ◽  
Author(s):  
Chunyang Li ◽  
Wenzhuo Wu ◽  
Shuaishuai Zhang ◽  
Liang He ◽  
Yusong Zhu ◽  
...  

A proof-of-concept lithium ion capacitor comprising LiMn2O4 nanorods as the cathode, a nitrogen-rich biomass carbon anode and a stable alkaline–neutral electrolyte was designed and fabricated.


2018 ◽  
Vol 29 (1) ◽  
pp. 1805978 ◽  
Author(s):  
Yingqiang Wu ◽  
Wenxi Wang ◽  
Jun Ming ◽  
Mengliu Li ◽  
Leqiong Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document