Flexible coaxial fiber-shaped asymmetric supercapacitors based on manganese, nickel co-substituted cobalt carbonate hydroxides

2020 ◽  
Vol 8 (4) ◽  
pp. 1837-1848 ◽  
Author(s):  
Xueying Cao ◽  
Ying Liu ◽  
Yuxue Zhong ◽  
Liang Cui ◽  
Aitang Zhang ◽  
...  

A wearable coaxial fiber-shaped asymmetric supercapacitor based on well-aligned Mn, Ni co-substituted Co carbonate hydroxide nanoneedle arrays on carbon fibers is successfully fabricated, and it exhibits excellent electrochemical performances.

Author(s):  
Jian Zhao ◽  
He Cheng ◽  
Huanyu Li ◽  
Yan-Jie Wang ◽  
Qingyan Jiang ◽  
...  

Developing advanced negative and positive electrode materials for asymmetric supercapacitors (ASCs) as the electrochemical energy storage can enable the device to reach high energy/power densities resulting from the cooperative effect...


2017 ◽  
Vol 5 (2) ◽  
pp. 804-813 ◽  
Author(s):  
Neng Yu ◽  
Kai Guo ◽  
Wei Zhang ◽  
Xianfu Wang ◽  
Ming-Qiang Zhu

A flexible asymmetric supercapacitor assembled with novel MnO@C composite nanosheets and Co3O4 nanosheets as negative and positive electrodes achieves an exceptional energy density of 59.6 W h kg−1 at a power density of 1529.8 W kg−1.


2017 ◽  
Vol 46 (38) ◽  
pp. 12876-12883 ◽  
Author(s):  
Saurabh Singh ◽  
Nanasaheb M. Shinde ◽  
Qi Xun Xia ◽  
Chandu V. V. M. Gopi ◽  
Je Moon Yun ◽  
...  

A NiCoMn-LDH (10%)//rGO asymmetric supercapacitor device with 574 Wh kg−1 energy density at 749.9 W kg−1 power density and 89.4% retention even after 2500 cycles has been explored.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yubing Yan

Developing efficient and low-cost replacements for noble metals as electrocatalysts for the oxygen evolution reaction (OER) remain a great challenge. Herein, we report a needle-like cobalt carbonate hydroxide hydrate (Co(CO3)0.5OH·0.11H2O) nanoarrays, which in situ grown on the surface of carbon cloth through a facile one-step hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations demonstrate that the Co(CO3)0.5OH nanoarrays with high porosity is composed of numerous one-dimensional (1D) nanoneedles. Owing to unique needle-like array structure and abundant exposed active sites, the Co(CO3)0.5OH@CC only requires 317 mV of overpotential to reach a current density of 10 mA cm−2, which is much lower than those of Co(OH)2@CC (378 mV), CoCO3@CC (465 mV) and RuO2@CC (380 mV). For the stability, there is no significant attenuation of current density after continuous operation 27 h. This work paves a facile way to the design and construction of electrocatalysts for the OER.


Sign in / Sign up

Export Citation Format

Share Document