scholarly journals A comparative study of silver nanoparticle dissolution under physiological conditions

2020 ◽  
Vol 2 (12) ◽  
pp. 5760-5768
Author(s):  
Lukas Steinmetz ◽  
Christoph Geers ◽  
Sandor Balog ◽  
Mathias Bonmarin ◽  
Laura Rodriguez-Lorenzo ◽  
...  

The dissolution and aggregation behaviour of silver nanoparticles under physiological conditions and in biologically relevant environments is investigated by exploiting their plasmonic properties.

2014 ◽  
Vol 1 (3) ◽  
pp. 238-247 ◽  
Author(s):  
Richard Eigenheer ◽  
Erick R. Castellanos ◽  
Meagan Y. Nakamoto ◽  
Kyle T. Gerner ◽  
Alyssa M. Lampe ◽  
...  

The protein coronas of silver nanoparticles are profoundly impacted by nanoparticle surface engineering and by environmentally and biologically relevant solution conditions.


Author(s):  
С.И. Каба ◽  
А.А. Соколовская

Продемонстрировано обнаружение наночастиц серебра во внутриклеточном пространстве с помощью проточной цитофлуориметрии. В эндотелиальных клетках линии EA.hy926, инкубированных в растворе, содержащем 2 мкг/мл наносеребра, измеряли боковое светорассеяние. По сравнению с контрольными образцами этот параметр возрастал, в то время как прочие значимые характеристики не изменялись. Это подтверждает чувствительность метода к изменившемуся состоянию клеток и указывает на поглощение наночастиц серебра клетками при концентрации ниже токсической. The study demonstrated a possibility for detection of intracellular silver nanoparticles using flow cytometry. The parameter used in this work, side scattering, was measured in EA.hy926 endothelial cells incubated in a 2 mg/ml silver nanoparticle solution. This parameter was increased compared to control samples. Therefore, this technique was sensitive to changes in the cell status and suggested the cell uptake of the particles under the subtoxic conditions.


RSC Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 3354-3362
Author(s):  
Munmun Bardhan ◽  
Sandip Dolui ◽  
Siddhi Chaudhuri ◽  
Uttam Paul ◽  
Gaurav Bhattacharjee ◽  
...  

Aggregation of intrinsically disordered as well as the ordered proteins under certain premises or physiological conditions leads to pathological disorder.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 693
Author(s):  
Hong Soo Kim ◽  
Hwapyong Kim ◽  
Monica Claire Flores ◽  
Gyu-Seok Jung ◽  
Su-Il In

With the rapid increase in energy consumption worldwide, the development of renewable and alternative energy sources can sustain long-term development in the energy field. Hydrogen (H2), which is one of the clean chemical fuels, has the highest weight energy density and its combustion byproduct is only water. Among the various methods of producing hydrogen source, water electrolysis is a process that can effectively produce H2. However, it is difficult for commercialization of water electrolysis for H2 production due to the high cost and low abundance of noble metal-based cathodic electrode used for highly efficiency. Several studies have been conducted to reduce noble metal loading and/or completely replace them with other materials to overcome these obstacles. Among them, stainless steel contains many components of transition metals (Ni, Cr, Co) but have sluggish reaction kinetics and small active surface area. In this study, the problem of stainless steel was to be solved by utilizing the electrocatalytic properties of silver nanoparticles on the electrode surface, and electrodes were easily fabricated through the electrodeposition process. In addition, the surface shape, elemental properties, and HER activity of the electrode was analyzed by comparing it with the commercialized silver nanoparticle-coated invasive electrodes from Inanos (Inano-Ag-IE) through the plasma coating process. As a result, silver nanoparticle-coated conventional electrode (Ag-CE) fabricated through electrodeposition confirmed high HER activity and stability. However, the Inano-Ag-IE showed low HER activity as silver nanoparticles were not found. We encourage further research on the production process of such products for sustainable energy applications.


Author(s):  
Sruthi Radhakrishnan

Green route for the synthesis of nanoparticles has become more acceptable than the other chemical as well as biological route. In the present study, silver nanoparticle is synthesized using ethanolic extract of Psidium guajava leaves. Further the synthesized silver nanoparticles were characterized by UV-Visible Spec, FT-IR, X-Ray Diffraction FESEM and E-DAX. The results of FT-IR provided evidence of the involvement of phytochemicals present in the leaf extract in the reduction of silver nitrate to silver nanoparticles. XRD confirmed the crystalline structure as well as shape of the synthesized nanoparticle as face-centred cubic. E-DAX profiling helped in determining the presence of elemental silver. The size of the nanoparticle procured by SEM analysis was found to be approximately 30-50 nm in size. Thus, the findings of this study showed that the plant assisted method for silver nanoparticle synthesis is more effective and further application level studies can shed lights on their use in healing of various human ailments.   


2017 ◽  
Vol 41 (12) ◽  
pp. 1399-1405
Author(s):  
Samanta Gasco ◽  
Amaya Rando ◽  
Pilar Zaragoza ◽  
Alberto García-Redondo ◽  
Ana Cristina Calvo ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (22) ◽  
pp. 18490-18501 ◽  
Author(s):  
J. Helmlinger ◽  
C. Sengstock ◽  
C. Groß-Heitfeld ◽  
C. Mayer ◽  
T. A. Schildhauer ◽  
...  

The influence of silver nanoparticle morphology on their dissolution kinetics in ultrapure water as well as their biological effect on eukaryotic and prokaryotic cells was examined.


Sign in / Sign up

Export Citation Format

Share Document