scholarly journals Sol–gel-assisted micro-arc oxidation synthesis and characterization of a hierarchically rough structured Ta–Sr coating for biomaterials

RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 20020-20027
Author(s):  
Ruiyan Li ◽  
Yongjie Wei ◽  
Long Gu ◽  
Yanguo Qin ◽  
Dongdong Li

A hierarchically rough structured Ta–Sr coating for biomaterials fabricated by a sol–gel-assisted micro-arc oxidation technique.

2002 ◽  
Vol 126 (2) ◽  
pp. 161-165 ◽  
Author(s):  
Junying Zhang ◽  
Zhongtai Zhang ◽  
Zilong Tang ◽  
Zishan Zheng ◽  
Yuanhua Lin

2014 ◽  
Vol 121 ◽  
pp. 20-29 ◽  
Author(s):  
Tim Van Gestel ◽  
Felix Hauler ◽  
Martin Bram ◽  
Wilhelm A. Meulenberg ◽  
Hans Peter Buchkremer

2003 ◽  
Vol 800 ◽  
Author(s):  
Brady J. Clapsaddle ◽  
Lihua Zhao ◽  
Alex E. Gash ◽  
Joe H. Satcher ◽  
Kenneth J. Shea ◽  
...  

ABSTRACTIn the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.


2011 ◽  
Vol 685 ◽  
pp. 367-370 ◽  
Author(s):  
Min Qi ◽  
Da Yi Yang ◽  
Jing Ying Zhang ◽  
Hong Jun Ai

In order to improve the osteoblast growth and bacteria resistance, Zn-containing hydroxyapatite (Zn-HA) and titanium oxide (TiO2) composite coatings were prepared to improve binding between coating and Ti substrate. TiO2 film was prepared on the surface of Ti by micro-arc oxidation (MAO) and Zn-HA coating was deposited on TiO2 using sol–gel technique. Phase structure, composition and microstructure of the surface coatings were analyzed by X-ray diffraction (XRD) and Energy Dispersive Spectrometer (EDS), respectively. The adhesion strength between the coatings with different Zn content was measured by tensile testing. The results showed that there was no significant influence of Zn content on adhesion strength between coating and Ti substrate.


1991 ◽  
Vol 24 (6) ◽  
pp. 1431-1434 ◽  
Author(s):  
Timothy E. Long ◽  
Larry W. Kelts ◽  
S. Richard Turner ◽  
Jeffrey A. Wesson ◽  
Thomas H. Mourey

Sign in / Sign up

Export Citation Format

Share Document