Exploring promising gas sensing and highly active catalysts for CO oxidation: transition-metal (Fe, Co and Ni) adsorbed Janus MoSSe monolayer

Author(s):  
Jia-Xing Guo ◽  
Shao-Yi Wu ◽  
Siying Zhong ◽  
Gao-Jun Zhang ◽  
Xing-Yuan Yu ◽  
...  

From the first-principles calculations, the transition-metal (TM) atoms (Fe, Co and Ni) adsorbed Janus MoSSe monolayer, toxic gas molecules (CO, NH3 and H2S) adsorbed on Ni-MoSSe monolayer and CO catalytic...

2018 ◽  
Vol 20 (31) ◽  
pp. 20661-20668 ◽  
Author(s):  
Ming-an Yu ◽  
Yingxin Feng ◽  
Liye Gao ◽  
Sen Lin

Highly active phosphomolybdic acid supported single-metal-atom catalysts for CO oxidation.


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 763 ◽  
Author(s):  
Shuai Yang ◽  
Zhiyong Wang ◽  
Xueqiong Dai ◽  
Jianrong Xiao ◽  
Mengqiu Long ◽  
...  

Phosphorene, due to its large surface-to-volume ratio and high chemical activity, shows potential application for gas sensing. In order to explore its sensing performance, we have performed the first-principles calculations based on density functional theory (DFT) to investigate the perfect and C-doped zigzag phosphorene nanoribbons (C-ZPNRs) with a series of small gas molecules (NH3, NO, NO2, H2, O2, CO, and CO2) adsorbed. The calculated results show that NH3, CO2, O2 gas molecules have relatively larger adsorption energies than other gas molecules, indicating that phosphorene is more sensitive to these gas molecules. For C-ZPNRs configuration, the adsorption energy of NO and NO2 increase and that of other gas molecules decrease. Interestingly, the adsorption energy of hydrogen is −0.229 eV, which may be suitable for hydrogen storage. It is hoped that ZPNRs may be a good sensor for (NH3, CO2 and O2) and C-ZPNRs may be useful for H2 storage.


Vacuum ◽  
2019 ◽  
Vol 165 ◽  
pp. 35-45 ◽  
Author(s):  
Guo-Xiang Chen ◽  
Han-Fei Li ◽  
Dou-Dou Wang ◽  
Si-Qi Li ◽  
Xiao-Bo Fan ◽  
...  

2019 ◽  
Vol 21 (21) ◽  
pp. 11455-11463 ◽  
Author(s):  
Wenfeng Pan ◽  
Ning Qi ◽  
Bin Zhao ◽  
Sheng Chang ◽  
Shizhuo Ye ◽  
...  

An investigation of the transport and optical properties of buckled bismuthene with different adsorbed gas molecules.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 452
Author(s):  
Michalis Konsolakis ◽  
Maria Lykaki

The rational design and fabrication of highly-active and cost-efficient catalytic materials constitutes the main research pillar in catalysis field. In this context, the fine-tuning of size and shape at the nanometer scale can exert an intense impact not only on the inherent reactivity of catalyst’s counterparts but also on their interfacial interactions; it can also opening up new horizons for the development of highly active and robust materials. The present critical review, focusing mainly on our recent advances on the topic, aims to highlight the pivotal role of shape engineering in catalysis, exemplified by noble metal-free, CeO2-based transition metal catalysts (TMs/CeO2). The underlying mechanism of facet-dependent reactivity is initially discussed. The main implications of ceria nanoparticles’ shape engineering (rods, cubes, and polyhedra) in catalysis are next discussed, on the ground of some of the most pertinent heterogeneous reactions, such as CO2 hydrogenation, CO oxidation, and N2O decomposition. It is clearly revealed that shape functionalization can remarkably affect the intrinsic features and in turn the reactivity of ceria nanoparticles. More importantly, by combining ceria nanoparticles (CeO2 NPs) of specific architecture with various transition metals (e.g., Cu, Fe, Co, and Ni) remarkably active multifunctional composites can be obtained due mainly to the synergistic metalceria interactions. From the practical point of view, novel catalyst formulations with similar or even superior reactivity to that of noble metals can be obtained by co-adjusting the shape and composition of mixed oxides, such as Cu/ceria nanorods for CO oxidation and Ni/ceria nanorods for CO2 hydrogenation. The conclusions derived could provide the design principles of earth-abundant metal oxide catalysts for various real-life environmental and energy applications.


2021 ◽  
Author(s):  
Lanjuan Zhou ◽  
Sujing Yu ◽  
Yan Yang ◽  
Qi Li ◽  
Tingting Li ◽  
...  

In this paper, the effects of five noble metals (Au, Pt, Pd, Ag, Ru) doped MoSe2 on improving gas sensing performance were predicted through density functional theory (DFT) based on...


Author(s):  
Yanxia Wang ◽  
Xue Jiang ◽  
Yi Wang ◽  
Jijun Zhao

Exploring two-dimensional (2D) ferromagnetic materials with intrinsic Dirac half-metallicity is crucial for the development of next-generation spintronic devices. Based on first-principles calculations, here we propose a simple valence electron-counting rule...


2019 ◽  
Vol 7 (9) ◽  
pp. 4971-4976 ◽  
Author(s):  
Tongtong Wang ◽  
Xiaosong Guo ◽  
Jingyan Zhang ◽  
Wen Xiao ◽  
Pinxian Xi ◽  
...  

We give a systematic study of the HER catalytic activity of transition metal doped NiS2 by first principles calculations and experiments.


Sign in / Sign up

Export Citation Format

Share Document