Optimal Energy Storage Portfolio for High and Ultrahigh Carbon-Free and Renewable Power Systems

Author(s):  
Omar J Guerra ◽  
Joshua Eichman ◽  
Paul Denholm

Achieving 100% carbon-free or renewable power systems can be facilitated by the deployment of energy storage technologies at all timescales, including short-duration, long-duration, and seasonal scales; however, most current literature...

2020 ◽  
Vol 8 ◽  
Author(s):  
Jiazi Zhang ◽  
Omar J. Guerra ◽  
Joshua Eichman ◽  
Matthew A. Pellow

The integration of high shares of variable renewable energy raises challenges for the reliability and cost-effectiveness of power systems. The value of long-duration energy storage, which helps address variability in renewable energy supply across days and seasons, is poised to grow significantly as power systems shift to larger shares of variable generation such as wind and solar. This study explores the system-level services and associated benefits of long-duration energy storage on the 2050 Western Interconnection (WI). The operation of the future WI system with 85% renewable penetration is simulated using a two-stage production cost model. The impact of long duration energy storage on systemwide operations is examined for the 2050 WI system, using a range of round-trip efficiencies corresponding to four different energy storage technologies. The analysis projects the energy storage dispatch profile, system-wide production cost savings (from both diurnal and seasonal operation), and impacts on generation mix, and change in renewable generation curtailment.


Nature Energy ◽  
2021 ◽  
Author(s):  
Nestor A. Sepulveda ◽  
Jesse D. Jenkins ◽  
Aurora Edington ◽  
Dharik S. Mallapragada ◽  
Richard K. Lester

Author(s):  
Francisco Díaz-González ◽  
Eduard Bullich-Massagué ◽  
Cristina Vitale ◽  
Marina Gil-Sánchez ◽  
Mònica Aragüés-Peñalba ◽  
...  

2018 ◽  
Vol 178 ◽  
pp. 355-368 ◽  
Author(s):  
J. Haas ◽  
F. Cebulla ◽  
W. Nowak ◽  
C. Rahmann ◽  
R. Palma-Behnke

Author(s):  
Eoghan McKenna ◽  
John Barton ◽  
Murray Thomson

This article studies the impact on CO2 emissions of electrical storage systems in power systems with high penetrations of wind generation. Using the Irish All-Island power system as a case-study, data on the observed dispatch of each large generator for the years 2008 to 2012 was used to estimate a marginal emissions factor of 0.547 kgCO2/kWh. Selected storage operation scenarios were used to estimate storage emissions factors – the carbon emissions impact associated with each unit of storage energy used. The results show that carbon emissions increase in the short-run for all storage technologies when consistently operated in ‘peak shaving and trough filling’ modes, and indicate that this should also be true for the GB and US power systems. Carbon emissions increase when storage is operated in ‘wind balancing’ mode, but reduce when storage is operated to reduce wind power curtailment, as in this case wind power operates on the margin. For power systems where wind is curtailed to maintain system stability, the results show that energy storage technologies that provide synthetic inertia achieve considerably greater carbon reductions. The results highlight a tension for policy makers and investors in storage, as scenarios based on the operation of storage for economic gains increase emissions, while those that decrease emissions are unlikely to be economically favourable. While some scenarios indicate storage increases emissions in the short-run, these should be considered alongside long-run assessments, which indicate that energy storage is essential to the secure operation of a fossil fuel-free grid.


Processes ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 267 ◽  
Author(s):  
Ian Miller ◽  
Emre Gençer ◽  
Francis O’Sullivan

The penetration of renewable power generation is increasing at an unprecedented pace. While the operating greenhouse gas (GHG) emissions of photovoltaic (PV) and wind power are negligible, their upstream emissions are not. The great challenge with the deployment of renewable power generators is their intermittent and variable nature. Current electric power systems balance these fluctuations primarily using natural gas fired power plants. Alternatively, these dynamics could be handled by the integration of energy storage technologies to store energy during renewable energy availability and discharge when needed. In this paper, we present a model for estimating emissions from integrated power generation and energy storage. The model applies to emissions of all pollutants, including greenhouse gases (GHGs), and to all storage technologies, including pumped hydroelectric and electrochemical storage. As a case study, the model is used to estimate the GHG emissions of electricity from systems that couple photovoltaic and wind generation with lithium-ion batteries (LBs) and vanadium redox flow batteries (VFBs). To facilitate the case study, we conducted a life cycle assessment (LCA) of photovoltaic (PV) power, as well as a synthesis of existing wind power LCAs. The PV LCA is also used to estimate the emissions impact of a common PV practice that has not been comprehensively analyzed by LCA—solar tracking. The case study of renewables and battery storage indicates that PV and wind power remain much less carbon intensive than fossil-based generation, even when coupled with large amounts of LBs or VFBs. Even the most carbon intensive renewable power analyzed still emits only ~25% of the GHGs of the least carbon intensive mainstream fossil power. Lastly, we find that the pathway to minimize the GHG emissions of power from a coupled system depends upon the generator. Given low-emission generation (<50 gCO2e/kWh), the minimizing pathway is the storage technology with lowest production emissions (VFBs over LBs for our case study). Given high-emission generation (>200 gCO2e/kWh), the minimizing pathway is the storage technology with highest round-trip efficiency (LBs over VFBs).


Author(s):  
Michael Welch ◽  
Andrew Pym

Increasing grid penetration of intermittent renewable power from wind and solar is creating challenges for the power industry. There are times when generation from these intermittent sources needs to be constrained due to power transmission capacity limits, and times when fossil fuel power plant are required to rapidly compensate for large power fluctuations, for example clouds pass over a solar field or the wind stops blowing. There have been many proposals, and some actual projects, to store surplus power from intermittent renewable power in some form or other for later use: Batteries, Compressed Air Energy Storage (CAES), Liquid Air Energy Storage (LAES), heat storage and Hydrogen being the main alternatives considered. These technologies will allow power generation during low periods of wind and solar power, using separate discrete power generation plant with specifically designed generator sets. But these systems are time-limited so at some point, if intermittent renewable power generation does not return to its previous high levels, fossil fuel power generation, usually from a large centralized power plant, will be required to ensure security of supplies. The overall complexity of such a solution to ensure secure power supplies leads to high capital costs, power transmission issues and potentially increased carbon emissions to atmosphere from the need to keep fossil fuel plant operating at low loads to ensure rapid response. One possible solution is to combine intermittent renewables and energy storage technologies with fast responding, flexible natural gas-fired gas turbines to create a reliable, secure, low carbon, decentralized power plant. This paper considers some hybrid power plant designs that could combine storage technologies and gas turbines in a single location to maximize clean energy production and reduce CO2 emissions while still providing secure supplies, but with the flexibility that today’s grid operators require.


2018 ◽  
Vol 171 ◽  
pp. 01002
Author(s):  
Hussein Ibrahim ◽  
Mazen Ghandour ◽  
Sabine Saad

The efficiency and cost of renewable power systems using intermittent resources could significantly be improved by developing low cost, high efficiency and more sustainable energy storage systems. There are various types of storage methods, some of which are already in use, while others are still in development. A comparison study between energy storage options is presented in this paper. We have taken a look at the main characteristics of the different electricity storage techniques and their field of application (permanent or portable, long-or short-term storage, maximum power required, etc.). These characteristics will serve to make comparisons in order to determine the most appropriate technique for each type of application. Based the results obtained in this study, a “performance index” have been determined for each storage technology in order to facilitate the comparison between the different storage devices.


2015 ◽  
Vol 3 (3) ◽  
pp. 30-40 ◽  
Author(s):  
Zhiwen Ma ◽  
Ahmad Pesaran ◽  
Vahan Gevorgian ◽  
Don Gwinner ◽  
William Kramer

Sign in / Sign up

Export Citation Format

Share Document