scholarly journals Two-dimensional Weyl points and nodal lines in pentagonal materials and their optical response

Nanoscale ◽  
2021 ◽  
Author(s):  
Sergio Bravo ◽  
M. Pacheco ◽  
V. Nuñez ◽  
J. D. Correa ◽  
Leonor Chico

A symmetry analysis combined with first-principles calculations of two-dimensional pentagonal materials (PdSeTe, PdSeS, InP5 and GeBi2) based on the Cairo tiling reveal nontrivial spin textures, nodal lines and Weyl points.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Rui-Chun Xiao ◽  
Ding-Fu Shao ◽  
Yu-Hang Li ◽  
Hua Jiang

AbstractRecent discovered two-dimensional (2D) antiferromagnetic (AFM) van der Waals quantum materials have attracted increasing interest due to the emergent exotic physical phenomena. The spintronic properties utilizing the intrinsic AFM state in 2D antiferromagnets, however, have been rarely found. Here we show that the spin photogalvanic effect (SPGE), which has been predicted in three-dimensional (3D) antiferromagnets, can intrinsically emerge in 2D antiferromagnets for promising spintronic applications. Based on the symmetry analysis of possible AFM orders in the honeycomb lattice, we conclude suitable 2D AFM candidate materials for realizing the SPGE. We choose two experimentally synthesized 2D collinear AFM materials, monolayer MnPS3, and bilayer CrCl3, as representative materials to perform first-principles calculations, and find that they support sizable SPGE. The SPGE in collinear 2D AFM materials can be utilized to generate pure spin current in a contactless and ultra-fast way.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Ning Zhao ◽  
Udo Schwingenschlögl

AbstractUtilizing a two-dimensional material in an electronic device as channel layer inevitably involves the formation of contacts with metallic electrodes. As these contacts can dramatically affect the behavior of the device, we study the electronic properties of monolayer Janus MoSSe in contact with different metallic electrodes by first-principles calculations, focusing on the differences in the characteristics of contacts with the two sides of MoSSe. In particular, we demonstrate that the Fermi level pinning is different for the two sides of MoSSe, with the magnitude resembling that of MoS2 or MoSe2, while both sides can form Ohmic contacts with common electrode materials without any further adaptation, which is an outstanding advantage over MoS2 and MoSe2.


Author(s):  
Yanxia Wang ◽  
Xue Jiang ◽  
Yi Wang ◽  
Jijun Zhao

Exploring two-dimensional (2D) ferromagnetic materials with intrinsic Dirac half-metallicity is crucial for the development of next-generation spintronic devices. Based on first-principles calculations, here we propose a simple valence electron-counting rule...


Author(s):  
Peishen Shang ◽  
Chunxiao Zhang ◽  
Mengshi Zhou ◽  
Chaoyu He ◽  
Tao Ouyang ◽  
...  

Searching for photocatalysts is crucial for the production of renewable hydrogen from water. Two-dimensional (2D) vdW heterojunctions show great potential. Using first- principles calculations within the HSE06 functional, we propose...


CrystEngComm ◽  
2022 ◽  
Author(s):  
Hajime Suzuki ◽  
Itsuki Miyazato ◽  
Tanveer Hussain ◽  
Fatih Ersan ◽  
Satoshi Maeda ◽  
...  

Two-dimensional dodecagonal boron nitride is designed via first principles calculations. Calculations unveil that the proposed two-dimensional dodecagonal boron nitride is energetically stable and less dense than what is observed with...


2017 ◽  
Vol 96 (5) ◽  
Author(s):  
Banasree Sadhukhan ◽  
Prashant Singh ◽  
Arabinda Nayak ◽  
Sujoy Datta ◽  
Duane D. Johnson ◽  
...  

2018 ◽  
Vol 6 (11) ◽  
pp. 2830-2839 ◽  
Author(s):  
Gul Rehman ◽  
S. A. Khan ◽  
B. Amin ◽  
Iftikhar Ahmad ◽  
Li-Yong Gan ◽  
...  

Based on (hybrid) first-principles calculations, material properties (structural, electronic, vibrational, optical, and photocatalytic) of van der Waals heterostructures and their corresponding monolayers (transition metal dichalcogenides and MXenes) are investigated.


Author(s):  
Bohayra Mortazavi ◽  
Masoud Shahrokhi ◽  
Xiaoying Zhuang ◽  
Alexander V. Shapeev ◽  
Timon Rabczuk

In the latest experimental advances in the field of two-dimensional (2D) materials, penta-PdPS and penta-PdPSe layered materials have been fabricated. In this work, we conduct first-principles calculations to explore the...


Sign in / Sign up

Export Citation Format

Share Document